Juan L. Silva
Mississippi State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan L. Silva.
North American Journal of Aquaculture | 2004
Brian G. Bosworth; William R. Wolters; Juan L. Silva; Roberto S. Chamul; Sinyoung Park
Abstract NWAC103 line channel catfish Ictalurus punctatus, Norris line channel catfish, and Norris line female channel catfish × Dycus Farm line male blue catfish I. furcatus F1 hybrids were compared for production, meat yield, and meat quality traits. Juvenile fish from each genetic group were stocked at 12,000 fish/ha into three, 0.04-ha ponds per genetic group. Fish were fed once daily to satiation from June through October, and fed on days when afternoon water temperatures were above 17°C from November through December. Fish were harvested, weighed, and counted in January, and 150 fish per genetic group (50 fish per pond) were processed and measured for meat and body component yield. Instrumental and sensory panel evaluations of quality were measured on fresh, frozen-thawed, and baked fillets. Stocking weight, harvest weight, and net production (kg/ha) were highest for the NWAC103 line channel catfish, intermediate for the hybrid, and lowest for the Norris line channel catfish. Growth at unit size (a)...
Journal of Food Protection | 2002
Taejo Kim; Juan L. Silva; T C Chen
Effects of intensity and processing time of 254 nm UV irradiation on Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium were investigated. Intensities measured at 5.08, 10.1, 15.2, and 20.3 cm from the light source were 1.000, 500, 250, and 150 microW/cm2, respectively. Intensities of 250 or 500 microW/cm2 reduced all suspended pathogen cells in peptone water about 5 log cycles after 2 min and completely inactivated L. monocytogenes and E. coli O157:H7 after 3 min by reductions of 8.39 and 8.64 log cycles, respectively. Intensities of 250 or 500 microW/cm2 also reduced (P < or = 0.05) the tested pathogens inoculated on stainless steel (SS) chips, and E. coli O157:H7 was completely destroyed at 500 microW/cm2 for 3 min. After UV treatment for 3 min at 500 microW/cm2, all selected pathogens on chicken meat with or without skin showed reduction ranges from 0.36 to 1.28 log cycles. Results demonstrated that UV irradiation could effectively decrease pathogens in peptone water and on SS but that it was less effective on chicken meat.
Food Microbiology | 2010
Bang-Yuan Chen; Rajkumar Pyla; Taejo Kim; Juan L. Silva; Yean-Sung Jung
Catfish skins, intestines, fresh fillets, processing surfaces at different production stages, chiller water and non-food contact surfaces were sampled for Listeria monocytogenes and other Listeria species. Among 315 samples, prevalence of L. monocytogenes, Listeria innocua and a group of Listeria seeligeri-Listeria welshimeri-Listeria ivanovii was 21.6, 13.0 and 29.5%, respectively. No Listeria grayi was detected in this survey. While no L. monocytogenes strains were isolated from catfish skins and intestines, the strains were found with a frequency of 76.7% in chilled fresh catfish fillets and 43.3% in unchilled fillets. L. monocytogenes and Listeria spp. were also detected in fish contact surfaces such as deheading machine, trimming board, chiller water, conveyor belts at different stages, and fillet weighing table. Among L. monocytogenes, 1/2b (47.0%), 3b (16.0%) and 4c (14%) were the predominant serotypes isolated, whereas 4b, 4e, 1/2c and 1/2a were detected at much lower frequencies. Genotype analyses of L. monocytogenes isolates using serotyping, pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed that chiller water represented an important contamination source of L. monocytogenes in the chilled catfish fillets of two processing facilities, whereas fillet weighing table significantly contributed to the catfish fillet contamination of the third facility. This study suggests that L. monocytogenes contamination in the processed catfish fillets originates from the processing environment, rather than directly from catfish. Results from this study can aid the catfish industry to develop a plant-specific proper cleaning and sanitation procedure for equipment and the processing environment designed to specifically target L. monocytogenes contamination.
Letters in Applied Microbiology | 2010
Bang-Yuan Chen; Rajkumar Pyla; Taejo Kim; Juan L. Silva; Yean-Sung Jung
Aims: To investigate the susceptibility of 221 Listeria spp. (86 Listeria monocytogenes, 41 Listeria innocua and 94 Listeria seeligeri‐Listeria welshimeri‐Listeria ivanovii) isolated from catfish fillets and processing environment to 15 antibiotics.
International Journal of Food Microbiology | 2010
Rajkumar Pyla; Taejo Kim; Juan L. Silva; Yean-Sung Jung
Starch-based films impregnated with fresh tannic acid (FTA/starch film) and thermally processed tannic acid (PTA/starch film) were assessed for inhibition of Escherichia coli O157:H7 and Listeria monocytogenes. Disc-diffusion assay revealed that the PTA/starch film showed larger clear zone around the film on the bacterial lawn than the FTA/starch film at the same tannic acid concentrations (0.45 to 4.5mg per disc). Viable cell count assays in tryptic soy broth showed that the PTA/starch film also had a stronger antimicrobial activity on these foodborne pathogens than the FTA/starch film. L. monocytogenes did not replicate in trypic soy broth containing the FTA/starch film for the first 8h but multiplied up to 9.22 log CFU/ml at 48 h of incubation. The PTA/starch film caused a 2.72-log decrease in L. monocytogenes cells over the same time period. While 5-log E. coli O157:H7 cells were inactivated by the FTA/starch film within 48 h, more than 7-log E. coli O157:H7 cells were killed by the PTA/starch film over the same period. The antimicrobial activity of FTA/starch and PTA/starch film was primarily pH independent. HPLC measurement of the FTA or PTA release from starch film in water revealed that their release kinetic curves were in well match with their inactivation curves for E. coli O157:H7 and L. monocytogenes in 0.1% peptone water. In addition to antimicrobial activity, FTA showed antioxidant activity on soybean oil by doubling the induction time of oil oxidation. PTA further enhanced the oxidative stability of the oil by 17%. These results suggested that the use of processed tannic acid in starch films could improve the safety and quality of foods.
Journal of Food Protection | 2013
Kamlesh A. Soni; Oladunjoye A; Ramakrishna Nannapaneni; M.W. Schilling; Juan L. Silva; Mikel B; Bailey Rh
Persistence of Salmonella biofilms within food processing environments is an important source of Salmonella contamination in the food chain. In this study, essential oils of thyme and oregano and their antimicrobial phenolic constituent carvacrol were evaluated for their ability to inhibit biofilm formation and inactivate preformed Salmonella biofilms. A crystal violet staining assay and CFU measurements were utilized to quantify biofilm cell mass, with evaluating factors such as strain variation, essential oil type, their concentrations, exposure time, as well as biofilm formation surface. Of the three Salmonella strains, Salmonella Typhimurium ATCC 23564 and Salmonella Typhimurium ATCC 19585 produced stronger biofilms than Salmonella Typhimurium ATCC 14028. Biofilm formation by different Salmonella strains was 1.5- to 2-fold higher at 22°C than at 30 or 37°C. The presence of nonbiocidal concentrations of thyme oil, oregano oil, and phenolic carvacrol at 0.006 to 0.012% suppressed Salmonella spp. biofilm formation 2- to 4-fold, but could not completely eliminate biofilm formation. There was high correlation in terms of biofilm inactivation, as determined by the crystal violet-stained optical density (at a 562-nm wavelength) readings and the viable CFU counts. Reduction of biofilm cell mass was dependent on antimicrobial concentration. A minimum concentration of 0.05 to 0.1% of these antimicrobial agents was needed to reduce a 7-log CFU biofilm mass to a nondetectable level on both polystyrene and stainless steel surfaces within 1 h of exposure time.
Applied Microbiology and Biotechnology | 1998
C. Handumrongkul; D.-P. Ma; Juan L. Silva
Abstract A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions.
Journal of Food Protection | 2012
Desai Ma; Kamlesh A. Soni; Ramakrishna Nannapaneni; M.W. Schilling; Juan L. Silva
Plant-derived essential oils were tested for their ability to eliminate biofilms of Listeria monocytogenes on polystyrene and stainless steel surfaces. Various concentrations of essential oils were tested with different contact times on biofilms of various ages. Preliminarily screening of nine essential oils and related phenolic compounds in a disk diffusion assay revealed that thyme oil, oregano oil, and carvacrol had the highest antimicrobial activity. Further screening of these three compounds against 21 L. monocytogenes strains representing all 13 serotypes indicated some strain-specific variations in antimicrobial activity. For 1-day-old biofilms of mixed L. monocytogenes strains produced at 22°C on polystyrene microtiter plates, only 0.1% concentrations of thyme oil, oregano oil, and carvacrol were needed to eliminate 7 log CFU per well. On the stainless steel coupons, a 0.5% concentration of these compounds was adequate to completely eliminate 4-day-old biofilms at 7 log CFU per coupon. Our findings indicate that these compounds are potential candidates for elimination of L. monocytogenes biofilms on stainless steel and polystyrene surfaces.
Journal of Food Protection | 2008
Taejo Kim; W. L. Weng; J. Stojanovic; Y. Lu; Yean-Sung Jung; Juan L. Silva
Water-soluble extracts were prepared from purple (cultivar Ison) and bronze (cultivar Carlos) muscadine seeds with or without heating. The Ison extracts had strong antimicrobial activity against a cocktail of three strains of Escherichia coli O157: H7. This extract had higher acidity (pH 3.39 to 3.43), total phenolics (2.21 to 3.49 mg/ml), tartaric acid (5.6 to 10.7 mg/ml), tannic acid (5.7 to 8.1 mg/ml), and gallic acid (0.33 to 0.59 mg/ml) than did the Carlos extracts. Heat treatment on both extracts increased antimicrobial activity, possibly because of increased acidity, tartaric acid, total phenolics, and individual phenolics. Heating of Ison extracts increased ellagic acid up to 83%. Up to 10.7 mg/ml tartaric acid alone was not as effective against E. coli O157:H7 as were water-soluble seed extracts. This finding suggests the involvement of other factors, such as tannic and gallic acids, in inactivation of this pathogen. Water-soluble muscadine seed extracts may be useful for incorporation into juice and other beverage products as natural preservatives.
Poultry Science | 2013
Ademola Oladunjoye; Kamlesh A. Soni; Ramakrishna Nannapaneni; M. Wes Schilling; Juan L. Silva; Benjy Mikel; R. Hartford Bailey; Barakat S.M. Mahmoud; Chander Shekhar Sharma
In the present study, low concentrations of carvacrol (0.025 to 0.2%) and lauric arginate (LAE; 25 to 200 ppm) were tested at 4, 22, and 45°C in a broth model, and higher concentrations of carvacrol (0.1 to 5%) and LAE (200 to 5,000 ppm) were tested individually and in combination at 4°C in 3 different ground turkey samples (with 15, 7, and 1% fat content) for their effectiveness against a 3-strain mixture of Salmonella. A low concentration of 25 ppm of LAE or 0.025% carvacrol had no effect on Salmonella in a broth model, but their mixture showed a synergistic action by reducing 6 log cfu/mL Salmonella counts to a nondetectable level within 30 min of exposure. The US Food and Drug Administration-recommended 200 ppm of LAE was not sufficient for Salmonella reductions in ground turkey when applied internally. High concentrations of 2,000 to 5,000 ppm of LAE or 1 to 2% carvacrol were needed to reduce Salmonella counts by 2 to 5 log cfu/g in ground turkey by internal application. No specific relationship existed between fat content and LAE or carvacrol concentrations for Salmonella reductions. For example, 2,000 ppm of LAE could reduce Salmonella counts by 4 log cfu/g in 1% fat-containing turkey samples but very similar ~1.5 log cfu/g reductions in both 7 and 15% fat-containing ground turkey samples. For the total microbial load, about 2,000 ppm of LAE or 2% of carvacrol treatments were needed to achieve 2 to 3 log (P ≤ 0.05) cfu/g reductions in different turkey samples. A mixture of 1% carvacrol and 2,000 ppm of LAE exhibited a synergistic action in ground turkey containing 7% fat by reducing the Salmonella counts by 4 log cfu/g, which was not found with individual antimicrobial treatments.