Juan Llopis
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Llopis.
FEBS Letters | 1991
Juan Llopis; George E.N. Kass; Steven K. Duddy; Geoffrey C. Farell; Annie Gahm; Sten Orrenius
Hepatocyte tight junctional permeability has been shown to be regulated by hormones that exert their effects via phospholipase C activation. However, the precise transduction pathway involved in this effect is not known. The present study has employed the selective inhibitor of microsomal Ca2+ sequestration, 2,5‐di(tert‐butyl)‐1,4‐benzohydroquinone (tBuBHQ), to examine the effect of the mobilization of the endoplasmic reticular Ca2+ pool on tight junctional permeability in the perfused rat liver. Infusion of tBuBHQ followed by a bolus infusion of horseradish peroxidase (HRP) resulted in a significant increase in the first peak of biliary HRP, a measure of junctional permeability, whereas transcellular (vesicular) transport of HRP was not affected. Therefore, we conclude that the effect of hormones on tight junctional permeability is mediated, at least in part, by the mobilization of intracellular Ca2+.
Archives of Biochemistry and Biophysics | 1989
Karin Öllinger; Juan Llopis; Enrique Cadenas
Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), the basic unit of several tetracyclic antitumor antibiotics, and its glutathione conjugate were reduced by the one- and two-electron transfer flavoproteins NADPH-cytochrome P450 reductase and DT-diaphorase to their semi- and hydroquinone forms, respectively. Kinetic studies performed on purified DT-diaphorase showed the following results: KNADPHm = 68 microM, KQuinonem = 0.92 microM, and Vmax 1300 nmol X min-1 X microgram enzyme-1. Similar studies performed on purified NADPH-cytochrome P450 reductase indicated a lower KNADPHm (10.5 microM) and higher KQuinonem (2.3 microM). The Vmax values were 20-fold lower (46 nmol X min-1 X micrograms enzyme-1) than those observed with DT-diaphorase. DT-diaphorase reduced the naphthazarin-glutathione conjugate with an efficiency 5-fold lower than that observed with the parent quinone. The nucleophilic addition of GSH to naphthazarin proceeded with GSH consumption at rates slower than those observed with 1,4-naphthoquinone and its monohydroxy derivative, 5-hydroxy-1,4-naphthoquinone. The initial rate of GSH consumption during these reactions did not vary whether the assay was carried out under anaerobic or aerobic conditions. Autoxidation accompanied the DT-diaphorase and NADPH-cytochrome P450 reductase catalysis of naphthazarin and its glutathionyl adduct as well as the 1,4-reductive addition of GSH to naphthazarin. Superoxide dismutase at catalytic concentrations (nM range) enhanced slightly (1.1- to 1.6-fold) the autoxidation following the enzymatic catalysis of naphthazarin. Autoxidation during the GSH reductive addition to 1,4-naphthoquinones decreased with increasing number of -OH substituents, 1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone greater than 5,8-dihydroxy-1,4-naphthoquinone, thus revealing that the contribution of redox transitions other than autoxidation, e.g., cross-oxidation, to the decay of the primary product of nucleophilic addition increases with increasing number of -OH substituents. Superoxide dismutase enhanced substantially the autoxidation of glutathionyl-naphthohydroquinone adducts, thereby affecting only slightly the total GSH consumed and GSSG formed during the reaction. The present results are discussed in terms of the relative contribution of one- and two-electron transfer flavoproteins to the bioreductive activation of naphthazarin and its glutathionyl conjugate as well as the importance of autoxidation reactions in the mechanism(s) of quinone cytotoxicity.
Antimicrobial Agents and Chemotherapy | 2009
Rosario Sabariegos; Fernando Picazo; Beatriz Domingo; Sandra Franco; Miguel-Angel Martínez; Juan Llopis
ABSTRACT The NS3/4A protease from hepatitis C virus (HCV) plays a key role in viral replication. We report a system for monitoring the activity of this enzyme in single living mammalian cells. We constructed a fluorescence resonance energy transfer (FRET) probe that consists of an enhanced cyan fluorescent protein-citrine fusion, with a cleavage site for HCV NS3/4A protease embedded within the linker between them. Expression of the biosensor in mammalian cells resulted in a FRET signal, and cotransfection with the NS3/4A expression vector produced a significant reduction in FRET, indicating that the cleavage site was processed. Western blot and spectrofluorimetry analysis confirmed the physical cleavage of the fusion probe by the NS3/4A protease. As the level of FRET decay was a function of the protease activity, the system allowed testing of NS3/4A protease variants with different catalytic efficiencies. This FRET probe could be adapted for high-throughput screening of new HCV NS3/4 protease inhibitors.
Biochimica et Biophysica Acta | 1994
George E.N. Kass; Sek C. Chow; Annie Gahm; Dominic-Luc Webb; Per-Olof Berggren; Juan Llopis; Sten Orrenius
The plasma membrane Ca2+ carrier system involved in receptor-mediated Ca2+ entry was studied. Using the Ca2+ readdition protocol, the rate of cytosolic free Ca2+ concentration ([Ca2+]i) increase in vasopressin-pretreated hepatocytes was significantly higher than in thapsigargin- or 2,5-di(tert-butyl)hydroquinone-pretreated cells. The addition of Mn2+ to unstimulated hepatocytes resulted in a biphasic quench of fura-2 fluorescence. After an initial phase that was fast in rate but of short duration, the rate of fura-2 quench by Mn2+ became much slower and lasted until all the cellular fura-2 was quenched. Pretreatment of the cells with vasopressin only accelerated the rate of the latter phase but not of the initial one. In agonist-stimulated cells, acidification of the extracellular medium or the presence of ruthenium red, econazole or SK&F 96365 decreased the rates of both [Ca2+]i increase and Mn2+ entry upon addition of the respective cation. By contrast, neomycin and N-tosyl-L-phenylalanine chloromethyl ketone markedly decreased the rate of [Ca2+]i increase upon Ca2+ readdition but had no effect on vasopressin-stimulated Mn2+ entry. None of the treatments affected the ability of vasopressin and thapsigargin to mobilize the internal Ca2+ store. It is concluded that in hepatocytes the two pathways of receptor-mediated Ca2+ entry control two distinct yet pharmacologically related cation carriers.
Free Radical Research | 1990
Juan Llopis; Lars Ernster; Enrique Cadenas
The oxidation of GSH coupled to the redox transitions of 1,4-naphthoquinone derivatives during DT-diaphorase catalysis was examined. The quinones studied included 1,4-naphthoquinone and its dimethoxy- and hydroxy derivatives and were selected according to their different ability to undergo nucleophilic addition with GSH and the dual effect of superoxide dismutase on hydroquinone autoxidation. GSH was oxidized to GSSG during the redox transitions of the above quinones, regardless of their substitution pattern. This effect was accompanied by an increase of total O2 consumption, indicating the ability of GSH to support quinone redox cycling. The values for the relationship [O2]consumed/[GSSG]formed were, with every quinone examined, above unity, thus pointing to the occurrence of autoxidation reactions other than those involved during GSSG formation. These results are discussed in terms of the functional group chemistry of the quinones and the thermodynamic properties of the reactions involved in the reduction of the semi- to the hydro-quinone by GSH.
Biochemical Pharmacology | 1993
Juan Llopis; Geoffrey C. Farrell; Steven K. Duddy; George E.N. Kass; Annie Gahm; Sten Orrenius
In the isolated perfused rat liver 2,5-di(tert-butyl)hydroquinone (tBuHQ), a selective inhibitor of the endoplasmic reticulum Ca2+ pump, induces a prolonged glucose output and stimulates Ca2+ efflux. The present study shows that tBuHQ depleted the hormone-sensitive Ca2+ pool in the perfused liver, abolishing the vasopressin- or phenylephrine-induced Ca2+ efflux. The effects of tBuHQ were reversible, since the response to these agonists gradually returned within 1 hr of perfusion, and protein synthesis was not required for this recovery. Since tBuHQ does not cause Ca2+ efflux from isolated hepatocytes, we examined the mechanism responsible for the tBuHQ-induced Ca2+ efflux observed in the intact liver. The cyclooxygenase inhibitor indomethacin prevented the Ca2+ extrusion stimulated by tBuHQ, but not that induced by vasopressin. During infusion of tBuHQ there was a 9-fold increase in the concentration of thromboxane B2 in the perfusate. The Ca2+ efflux response to tBuHQ was inhibited by the thromboxane/prostaglandin endoperoxide receptor antagonist, L-655,240 (3-[1-(4-chlorobenzyl)-5-fluoro-3-methyl-indol-2-yl]2,2-dimethylpropa noic acid) in the absence of any effect on thromboxane B2 release. Thus, the inhibition of the endoplasmic reticulum Ca2+ pump by tBuHQ results in a rise in the cytosolic Ca2+ concentration in non-parenchymal cells, leading to the formation of cyclooxygenase products. The released eicosanoids, in turn, stimulate Ca2+ efflux from hepatocytes.
FEBS Letters | 1992
Francisco J. Romero; Juan Llopis; Vicente Felipo; María-Dolores Miñana; Joaquín Romá; Santiago Grisolia
It is shown that the intracellular glutathione (GSH) concentration of neuroblastoma‐2a cells in culture increases with a maximum at 24 h after starting treatment with 1‐(5‐isoquinolinylsulfonyl)‐2‐methylpiperazine (H7), an inhibitor of protein kinase C (PKC). Other inhibitors of this and other protein kinases, e.g. sphingosine, staurosporine, and HA 1004, at the concentrations tested, had a less marked or negligible effect on intracellular GSH concentration. 12‐O‐Tetradecanoylphorbol‐13‐acetate (TPA) was also tested and showed no significant effect 24 h after addition.
Biochemical Journal | 1992
Juan Llopis; George E.N. Kass; Annie Gahm; Sten Orrenius
Biochemical Journal | 1991
Juan Llopis; S. B. Chow; George E.N. Kass; Annie Gahm; Sten Orrenius
Archive | 2004
Pedro Tranque; Cecilia F. Vaquero; Beatriz Domingo; Francisca Molina; Juan Llopis