Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Luis Concepción is active.

Publication


Featured researches published by Juan Luis Concepción.


Molecular and Biochemical Parasitology | 2002

Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana

Julio A. Urbina; Juan Luis Concepción; Salomé Rangel; Gonzalo Visbal; Renee Lira

Trypanosoma cruzi and Leishmania parasites have a strict requirement for specific endogenous sterols (ergosterol and analogs) for survival and growth and cannot use the abundant supply of cholesterol present in their mammalian hosts. Squalene synthase (SQS, E.C. 2.5.1.21) catalyzes the first committed step in sterol biosynthesis and is currently under intense study as a possible target for cholesterol-lowering agents in humans, but it has not been investigated as a target for anti-parasitic chemotherapy. SQS is a membrane-bound enzyme in both T. cruzi epimastigotes and Leishmania mexicana promastigotes with a dual subcellular localization, being almost evenly distributed between glycosomes and mitochondrial/microsomal vesicles. Kinetic studies showed that the parasite enzymes display normal Michaelis-Menten kinetics and the values of the kinetic constants are comparable to those of the mammalian enzyme. We synthesized and purified 3-(biphenyl-4-yl)-3-hydroxyquinuclidine (BPQ-OH), a potent and specific inhibitor of mammalian SQS and found that it is also a powerful non-competitive inhibitor of T. cruzi and L. mexicana SQS, with K(i)s in the range of 12-62 nM. BPQ-OH induced a dose-dependent reduction of proliferation the extracellular stages of these parasites with minimal growth inhibitory concentrations (MIC) of 10-30 microM. Growth inhibition and cell lysis induced by BPQ-OH in both parasites was associated with complete depletion of endogenous squalene and sterols, consistent with a blockade of de novo sterol synthesis at the level of SQS. BPQ-OH was able to eradicate intracellular T. cruzi amastigotes from Vero cells cultured at 37 degrees C, with a MIC of 30 microM with no deleterious effects on host cells. Taken together, these results support the notion that SQS inhibitors could be developed as selective anti-trypanosomatid agents.


Parasitology Research | 2007

Enolase as a plasminogen binding protein in Leishmania mexicana

Gilmer Vanegas; Wilfredo Quiñones; Cesar Carrasco-López; Juan Luis Concepción; Fernando Albericio; Luisana Avilán

Enolase is a glycolytic and gluconeogenic enzyme also found on the surface of several eukaryotic and prokaryotic cells where it acts as plasminogen binding protein. Leishmania mexicana, one of the causative agents of Leishmaniasis, binds plasminogen and, in this parasite, enolase has been previously found associated with the external face of the plasma membrane. In this work, we show that the purified recombinant enolase has plasminogen binding activity indicating that, at the surface of the parasite, the protein may function as one of the plasminogen receptors. An internal motif 249AYDAERKMY257, similar to the nine amino-acid internal plasminogen-binding motif in Streptococcus pneumoniae enolase, is responsible for plasminogen interaction with the parasite enolase. Anti-enolase antibodies inhibited up to 60% of plasminogen binding on live parasites indicating that enolase act as a plasminogen receptor on the parasite. The fact that enolase acts as a possible plasminogen receptor in vivo makes this protein a promising target for therapy.


International Journal for Parasitology | 2012

When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle.

Melisa Gualdrón-López; Ana Brennand; Véronique Hannaert; Wilfredo Quiñones; Ana J. Cáceres; Frédéric Bringaud; Juan Luis Concepción; Paul A. M. Michels

A characteristic, well-studied feature of the pathogenic protists belonging to the family Trypanosomatidae is the compartmentalisation of the major part of the glycolytic pathway in peroxisome-like organelles, hence designated glycosomes. Such organelles containing glycolytic enzymes appear to be present in all members of the Kinetoplastea studied, and have recently also been detected in a representative of the Diplonemida, but they are absent from the Euglenida. Glycosomes therefore probably originated in a free-living, common ancestor of the Kinetoplastea and Diplonemida. The initial sequestering of glycolytic enzymes inside peroxisomes may have been the result of a minor mistargeting of proteins, as generally observed in eukaryotic cells, followed by preservation and its further expansion due to the selective advantage of this specific form of metabolic compartmentalisation. This selective advantage may have been a largely increased metabolic flexibility, allowing the organisms to adapt more readily and efficiently to different environmental conditions. Further evolution of glycosomes involved, in different taxonomic lineages, the acquisition of additional enzymes and pathways - often participating in core metabolic processes - as well as the loss of others. The acquisitions may have been promoted by the sharing of cofactors and crucial metabolites between different pathways, thus coupling different redox processes and catabolic and anabolic pathways within the organelle. A notable loss from the Trypanosomatidae concerned a major part of the typical peroxisomal H(2)O(2)-linked metabolism. We propose that the compartmentalisation of major parts of the enzyme repertoire involved in energy, carbohydrate and lipid metabolism has contributed to the multiple development of parasitism, and its elaboration to complicated life cycles involving consecutive different hosts, in the protists of the Kinetoplastea clade.


Molecular and Biochemical Parasitology | 2003

Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi

Ana J. Cáceres; Ramon Portillo; Héctor Acosta; David Rosales; Wilfredo Quiñones; Luisana Avilán; Leiria Salazar; Michel Dubourdieu; Paul A. M. Michels; Juan Luis Concepción

The Trypanosoma cruzi hexokinase gene has been cloned, sequenced, and expressed as an active enzyme in Escherichia coli. Sequence analysis revealed 67% identity with its counterpart in Trypanosoma brucei but low similarity with all other available hexokinase sequences including those of human. It contains an N-terminal peroxisome-targeting signal (PTS-2) and has a calculated basic isoelectric point (pI = 9.67), a feature often associated with glycosomal proteins. The polypeptide has a predicted mass of approximately 50 kDa similar to that of many non-vertebrate hexokinases and the vertebrate hexokinase isoenzyme IV. The natural enzyme was purified to homogeneity from T. cruzi epimastigotes and appeared to exist in several aggregation states, an apparent tetramer being the predominant form. Its kinetic properties were compared with those of the purified recombinant protein. Higher K(m) values for glucose and ATP were found for the (His)(6)-tag-containing recombinant hexokinase. However, removal of the tag produced an enzyme displaying similar values as the natural enzyme (K(m) for glucose = 43 and 60 microM for the natural and the recombinant protein, respectively). None of these enzymes presented activity with fructose. As reported previously for hexokinases from several trypanosomatids, no inhibition was exerted by glucose 6-phosphate (G6-P). In contrast, a mixed-type inhibition was observed with inorganic pyrophosphate (PPi, K(i) = 0.5mM).


Antimicrobial Agents and Chemotherapy | 2008

In Vitro Activities of ER-119884 and E5700, Two Potent Squalene Synthase Inhibitors, against Leishmania amazonensis: Antiproliferative, Biochemical, and Ultrastructural Effects

Juliany Cola Fernandes Rodrigues; Juan Luis Concepción; Carlos Rodrigues; Aura Caldera; Julio A. Urbina; Wanderley de Souza

ABSTRACT ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC50s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasites main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC50s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our observations indicate that ER-119884 may also interfere with other cellular processes.


Antimicrobial Agents and Chemotherapy | 2003

Mechanism of Action of 4-Phenoxyphenoxyethyl Thiocyanate (WC-9) against Trypanosoma cruzi, the Causative Agent of Chagas’ Disease

Julio A. Urbina; Juan Luis Concepción; Andrea Montalvetti; Juan B. Rodriguez; Roberto Docampo

ABSTRACT We investigated the molecular basis of the activity of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the etiological agent of Chagas’ disease. We found that growth inhibition of T. cruzi epimastigotes induced by this compound was associated with a reduction in the content of the parasites endogenous sterols due to a specific blockade of their de novo synthesis at the level of squalene synthase.


Chemotherapy | 2009

Amiodarone and Itraconazole: A Rational Therapeutic Approach for the Treatment of Chronic Chagas’ Disease

A.E. Paniz-Mondolfi; A.M. Pérez-Álvarez; G. Lanza; E. Márquez; Juan Luis Concepción

In the Americas, approximately 20 million people suffer from the chronic phases of Chagas’ disease, of which chagasic cardiomyopathy is the most important clinical feature. The elimination of Trypanosoma cruzi is a pivotal step in arresting the evolution of the disease. Unfortunately, currently available chemotherapy is mostly ineffective due to its limited efficacy and toxic side effects. The following case highlights the efficacy of new diagnostic and follow-up methods in the evaluation of novel trypanocidal compounds such as amiodarone and itraconazole.


Comparative Biochemistry and Physiology B | 1999

Purification and properties of phosphoglucose isomerases of Trypanosoma cruzi

Juan Luis Concepción; Bernardo Chataing; Michel Dubourdieu

Glucosephosphate isomerase (PGI; EC 5.3.1.9) of Trypanosoma cruzi epimastigotes was found in about the same proportion in the glycosome and the cytosol. This subcellular distribution is similar to that of Leishmania mexicana, but contrasts with that of T. brucei bloodstream form, where the enzyme is essentially restricted to the glycosome. Glucosephosphate isomerase was highly purified from a glycosome-enriched fraction and to about 70% purity from the soluble extract. Both enzymes displayed Michaelis-Menten-Henri kinetics. Km values for fructose 6-phosphate were 0.125 +/- 0.07 and 0.80 +/- 0.10 mM for the glycosomal and the cytosolic PGIs, respectively. Erythrose-4-phosphate, 6-phosphogluconate and mannose-6-phosphate were inhibitors for both PGIs. Phosphogluconate and erythrose phosphate showed higher affinity for cytosolic PGI than for glycosomal PGI, by 2.5- and 4-fold respectively. The PGIs differed slightly in their isoelectric point (7.1 +/- 0.15 and 7.5 +/- 0.12) and optimum pH range. Both PGIs also differed in their chromatographic properties (ion-exchange and phenyl Sepharose), indicating a difference in charge and hydrophobicity, with the glycosomal enzyme being more hydrophobic. The molecular mass of both PGIs was 186,000 +/- 9000 Da, which is higher than that of other known PGIs, including those from T. brucei and other trypanosomatids. The molecular mass of the subunit, 63 kDa, is similar to that of PGIs from other sources. It appears that PGIs from T. cruzi are trimeric, in contrast with all other known PGIs which are dimeric.


Therapeutics and Clinical Risk Management | 2008

Concurrent Chagas' disease and borderline disseminated cutaneous leishmaniasis: The role of amiodarone as an antitrypanosomatidae drug

Alberto Paniz-Mondolfi; Alexandra Perez‐Alvarez; Oscar Reyes-Jaimes; Gustavo Socorro; Olga Zerpa; Denisa Slova; Juan Luis Concepción

The occurrence of mixed infections of Trypanosoma cruzi and Leishmania spp. is becoming a common feature in Central and South America due to overlapping endemic areas. Unfortunately, the possibilities for treating flagellated kinetoplastid infections are still very limited and most of the available drugs exhibit severe side effects. Although the development of new drugs for Leishmania has markedly improved in the last years, the tendency is still to employ antimonial compounds. On the other hand, treatment for Chagas’ disease is only available for the acute phase with no effective therapeutical options for chronic stage disease. The following case report substantiates the recently discovered effect of amiodarone as a nonconventional antiparasitic drug, particularly against Leishmania, breaching a new perspective in the therapeutic management of these important infectious parasitic diseases.


Acta Tropica | 2008

Characteristics of plasminogen binding to Trypanosoma cruzi epimastigotes.

Masyelly Rojas; Indira Labrador; Juan Luis Concepción; Elis Aldana; Luisana Avilán

The binding constants of the interaction between plasminogen and Trypanosoma cruzi epimastigotes were determined. An indirect method in which the bound plasminogen is detached from the cell by epsilon-aminocaproic acid and a direct method through biotinylated plasminogen were used. The analyses revealed a dissociation constant (Kd) from 0.4 to 1.2microM, these values being compatible with recognition in vivo. Moreover, epimastigotes from the gut of Rhodnius prolixus were able to bind plasminogen from the blood meal. Fragments derived from elastase digestion of plasminogen were tested for their ability to bind T. cruzi cells. The fragment with highest ability to interact with the parasite was miniplasminogen that bound in a concentration-dependent and saturable manner with a Kd similar to that for plasminogen. This binding was inhibited by epsilon-aminocaproic acid indicating that the lysine-binding site of kringle 5 may be responsible for the interaction of plasminogen with T. cruzi.

Collaboration


Dive into the Juan Luis Concepción's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge