Juan-Luis Ramos
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan-Luis Ramos.
Journal of Bacteriology | 2000
Manuel Espinosa-Urgel; Amparo Salido; Juan-Luis Ramos
Many agricultural uses of bacteria require the establishment of efficient bacterial populations in the rhizosphere, for which colonization of plant seeds often constitutes a critical first step. Pseudomonas putida KT2440 is a strain that colonizes the rhizosphere of a number of agronomically important plants at high population densities. To identify the functions involved in initial seed colonization by P. putida KT2440, we subjected this strain to transposon mutagenesis and screened for mutants defective in attachment to corn seeds. Eight different mutants were isolated and characterized. While all of them showed reduced attachment to seeds, only two had strong defects in their adhesion to abiotic surfaces (glass and different plastics). Sequences of the loci affected in all eight mutants were obtained. None of the isolated genes had previously been described in P. putida, although four of them showed clear similarities with genes of known functions in other organisms. They corresponded to putative surface and membrane proteins, including a calcium-binding protein, a hemolysin, a peptide transporter, and a potential multidrug efflux pump. One other showed limited similarities with surface proteins, while the remaining three presented no obvious similarities with known genes, indicating that this study has disclosed novel functions.
Journal of Biological Chemistry | 2006
Patricia Domínguez-Cuevas; José-Eduardo González-Pastor; Silvia Marqués; Juan-Luis Ramos; Víctor de Lorenzo
When Pseudomonas putida KT2440 cells encounter toluene in the growth medium, they perceive it simultaneously as a potential nutrient to be metabolized, as a membrane-damaging toxic drug to be extruded, and as a macromolecule-disrupting agent from which to protect proteins. Each of these inputs requires a dedicated transcriptional response that involves a large number of genes. We used DNA array technology to decipher the interplay between these responses in P. putida KT2440 subjected to a short challenge (15 min) with toluene. We then compared the results with those in cells exposed to o-xylene (a non-biodegradable toluene counterpart) and 3-methylbenzoate (a specific substrate of the lower TOL pathway of the P. putida pWW0 plasmid). The resulting expression profiles suggest that the bulk of the available transcriptional machinery is reassigned to endure general stress, whereas only a small share of the available machinery is redirected to the degradation of the aromatic compounds. Specifically, both toluene and o-xylene induce the TOL pathways and a dedicated but not always productive metabolic program. Similarly, 3-methylbenzoate induces the expression not only of the lower meta pathway but also of the non-productive and potentially deleterious genes for the metabolism of (nonsubstituted) benzoate. In addition, toluene (and to a lesser extent o-xylene) inhibit motility functions as an unequivocal response to aromatic toxicity. We argue that toluene is sensed by P. putida KT2440 as a stressor rather than as a nutrient and that the inhibition by the aromatic compounds of many functions we tested is the tradeoff for activating stress tolerance genes at a minimal cost in terms of energy.
Journal of Bacteriology | 2005
Ana Segura; Patricia Godoy; Pieter van Dillewijn; Ana Hurtado; Nuria Arroyo; Simon Santacruz; Juan-Luis Ramos
Pseudomonas putida DOT-T1E is tolerant to toluene and other toxic hydrocarbons through extrusion of the toxic compounds from the cell by means of three efflux pumps, TtgABC, TtgDEF, and TtgGHI. To identify other cellular factors that allow the growth of P. putida DOT-T1E in the presence of high concentrations of toluene, we performed two-dimensional gel analyses of proteins extracted from cultures grown on glucose in the presence and in the absence of the organic solvent. From a total of 531 spots, 134 proteins were observed to be toluene specific. In the absence of toluene, 525 spots were clearly separated and 117 proteins were only present in this condition. Moreover, 35 proteins were induced by at least twofold in the presence of toluene whereas 26 were repressed by at least twofold under these conditions. We reasoned that proteins that were highly induced could play a role in toluene tolerance. These proteins, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry, were classified into four categories: 1, proteins involved in the catabolism of toluene; 2, proteins involved in the channeling of metabolic intermediates to the Krebs cycle and activation of purine biosynthesis; 3, proteins involved in sugar transport; 4, stress-related proteins. The set of proteins in groups 2 and 3 suggests that the high energy demand required for solvent tolerance is achieved via activation of cell metabolism. The role of chaperones that facilitate the proper folding of newly synthesized proteins under toluene stress conditions was analyzed in further detail. Knockout mutants revealed that CspA, XenA, and Tuf-1 play a role in solvent tolerance in Pseudomonas, although this role is probably not specific to toluene, as indicated by the fact that all mutants grew more slowly than the wild type without toluene.
Journal of Bacteriology | 2000
Gilberto Mosqueda; Juan-Luis Ramos
Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to the tod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. putida, site-directed mutagenesis was used to knock out the gene in the wild-type DOT-T1E strain and in a mutant derivative, DOT-T1E-18. This mutant carried a Tn5 insertion in the ttgABC gene cluster, which encodes a toluene efflux pump that is synthesized constitutively. For site-directed mutagenesis, a cassette to knock out the ttgD gene and encoding resistance to tellurite was constructed in vitro and transferred to the corresponding host chromosome via the suicide plasmid pKNG101. Successful replacement of the wild-type sequences with the mutant cassette was confirmed by Southern hybridization. A single ttgD mutant, DOT-T1E-1, and a double mutant with knock outs in the ttgD and ttgA genes, DOT-T1E-82, were obtained and characterized for toluene tolerance. This was assayed by the sudden addition of toluene (0.3% [vol/vol]) to the liquid culture medium of cells growing on Luria-Bertani (LB) medium (noninduced) or on LB medium with toluene supplied via the gas phase (induced). Induced cells of the single ttgD mutant were more sensitive to sudden toluene shock than were the wild-type cells; however, noninduced wild-type and ttgD mutant cells were equally tolerant to toluene shock. Noninduced cells of the double DOT-T1E-82 mutant did not survive upon sudden toluene shock; however, they still remained viable upon sudden toluene shock if they had been previously induced. These results are discussed in the context of the use of multiple efflux pumps involved in solvent tolerance in P. putida DOT-T1E.
Antimicrobial Agents and Chemotherapy | 2003
Wilson Terán; Antonia Felipe; Ana Segura; Antonia Rojas; Juan-Luis Ramos; María-Trinidad Gallegos
ABSTRACT Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.
Current Opinion in Biotechnology | 2012
Ana Segura; Lázaro Molina; Sandy Fillet; Tino Krell; Patricia Bernal; Jesús Muñoz-Rojas; Juan-Luis Ramos
Bacteria have been found in all niches explored on Earth, their ubiquity derives from their enormous metabolic diversity and their capacity to adapt to changes in the environment. Some bacterial strains are able to thrive in the presence of high concentrations of toxic organic chemicals, such as aromatic compounds, aliphatic alcohols and solvents. The extrusion of these toxic compounds from the cell to the external medium represents the most relevant aspect in the solvent tolerance of bacteria, however, solvent tolerance is a multifactorial process that involves a wide range of genetic and physiological changes to overcome solvent damage. These additional elements include reduced membrane permeabilization, implementation of a stress response programme, and in some cases degradation of the toxic compound. We discuss the recent advances in our understanding of the mechanisms involved in solvent tolerance.
Microbiology | 2002
Manuel Espinosa-Urgel; Roberto Kolter; Juan-Luis Ramos
Most of us feel, from time to time, that other authors have not acknowledged the work of our own or other groups or have omitted to interpret important aspects of their own data. Perhaps we have observations that, although not sufficient to merit a full paper, add a further dimension to one published by others. In other instances we may have a useful piece of methodology that we would like to share.
Nature Biotechnology | 1994
Juan-Luis Ramos; Eduardo Díaz; David N. Dowling; V. de Lorenzo; S. Molin; Fergal O'Gara; Ramos C; Kenneth N. Timmis
Mineralization of organic molecules by microbes is essential for the carbon cycle to operate. The massive mobilization of compounds stored in natural resources, or the introduction of xenobiotics into the biosphere, leads to unidirectional fluxes, which result in the persistance of a number of chemicals in the biosphere, and thus constitute a source of pollution. Molecular biology offers the tools to optimize the biodegradative capacities of microorganisms, accelerate the evolution of “new” activities, and construct totally “new” pathways through the assemblage of catabolic segments from different microbes. Although the number of genetically engineered microbes (GEMs) for potential use in biodegradation is not large, these recombinant microbes function in microcosms according to their design. The survival and fate of recombinant microbes in different ecological niches under laboratory conditions is similar to what has been observed for the unmodified parental strains. rDNA, both on plasmids and on the host chromosome, is usually stably inherited by GEMs. The potential lateral transfer of rDNA from the GEMs to other microbes is significantly diminished, though not totally inhibited, when rDNA is incorporated on the host chromosome. The behavior and fate of GEMs can be predicted more accurately through the coupling of regulatory circuits that control the expression of catabolic pathways to killing genes, so that the GEMs survive in polluted environments, but die when the target chemical is eliminated.
Environmental Microbiology | 2010
Jesús Lacal; Cristina García-Fontana; Francisco Muñoz-Martínez; Juan-Luis Ramos; Tino Krell
Central to the different forms of taxis are methyl-accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one-by-one bioinformatic analysis of the almost-totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N-terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un-annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220-299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.
Applied and Environmental Microbiology | 2006
Jesús Muñoz-Rojas; Patricia Bernal; Estrella Duque; Patricia Godoy; Ana Segura; Juan-Luis Ramos
ABSTRACT Pseudomonas putida KT2440, a saprophytic soil bacterium that colonizes the plant root, is a suitable microorganism for the removal of pollutants and a stable host for foreign genes used in biotransformation processes. Because of its potential use in agriculture and industry, we investigated the conditions for the optimal preservation of the strain and its derivatives for long-term storage. The highest survival rates were achieved with cells that had reached the stationary phase and which had been subjected to freeze-drying in the presence of disaccharides (trehalose, maltose, and lactose) as lyoprotectants. Using fluorescence polarization techniques, we show that cell membranes of KT2440 were more rigid in the stationary phase than in the exponential phase of growth. This is consistent with the fact that cells grown in the stationary phase exhibited a higher proportion of C17:cyclopropane as a fatty acid than cells in the exponential phase. Mutants for the cfaB gene, which encodes the main C17:cyclopropane synthase, and for the cfaA gene, which encodes a minor C17:cyclopropane synthase, were constructed. These mutants were more sensitive to freeze-drying than wild-type cells, particularly the mutant with a knockout in the cfaB gene that produced less than 2% of the amount of C17:cyclopropane produced by the parental strain.