Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan M. Alba is active.

Publication


Featured researches published by Juan M. Alba.


International Journal of Molecular Sciences | 2012

Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores

Joris J. Glas; Bernardus C. J. Schimmel; Juan M. Alba; Rocío Escobar-Bravo; Robert C. Schuurink; Merijn R. Kant

Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant’s secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant’s resistance to pests.


New Phytologist | 2015

Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk.

Juan M. Alba; Bernardus C. J. Schimmel; Joris J. Glas; Livia M. S. Ataide; Maria L. Pappas; Carlos A. Villarroel; Robert C. Schuurink; Maurice W. Sabelis; Merijn R. Kant

Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: ‘early’ (expression peak at 1 d postinfestation (dpi)); ‘intermediate’ (4 dpi); and ‘late’, whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA–SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.


Plant Journal | 2016

Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction

Carlos A. Villarroel; Wim Jonckheere; Juan M. Alba; Joris J. Glas; Wannes Dermauw; Michel A. Haring; Thomas Van Leeuwen; Robert C. Schuurink; Merijn R. Kant

Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.


BMC Biology | 2014

Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities

Joris J. Glas; Juan M. Alba; Sauro Simoni; Carlos A. Villarroel; Marije Stoops; Bernardus C. J. Schimmel; Robert C. Schuurink; Maurice W. Sabelis; Merijn R. Kant

BackgroundPlants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance.ResultsWe observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth.ConclusionsOur results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore’s fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.


Experimental and Applied Acarology | 2013

Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici

Y. M. van Houten; Joris J. Glas; Hans Hoogerbrugge; J H Rothe; Karel Jozef Florent Bolckmans; Sauro Simoni; R. J. van Arkel; Juan M. Alba; Merijn R. Kant; Maurice W. Sabelis

Tomato plants have their leaves, petioles and stems covered with glandular trichomes that protect the plant against two-spotted spider mites and many other herbivorous arthropods, but also hinder searching by phytoseiid mites and other natural enemies of these herbivores. This trichome cover creates competitor-free and enemy-free space for the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars currently used in practice. Indeed, several species of predatory mites tested for biological control of TRM have been reported to feed and reproduce when offered TRM as prey in laboratory experiments, yet in practice these predator species appeared to be unable to prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found exactly the same, but also obtained evidence for successful establishment of a population of this predatory mite on whole plants that had been previously infested with TRM. This successful establishment may be explained by our observation that the defensive barrier of glandular plant trichomes is literally dropped some time after TRM infestation of the tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration after which they dry out and fall over onto the plant surface. Wherever TRM triggered this response, predatory mites were able to successfully establish a population. Nevertheless, biological control was still unsuccessful because trichome deterioration in TRM-infested areas takes a couple of days to take effect and because it is not a systemic response in the plant, thereby enabling TRM to seek temporary refuge from predation in pest-free trichome-dense areas which continue to be formed while the plant grows. We formulate a hypothesis unifying these observations into one framework with an explicit set of assumptions and predictions to be tested in future experiments.


Heredity | 2014

Testing for reproductive interference in the population dynamics of two congeneric species of herbivorous mites

Yukie Sato; Juan M. Alba; Maurice W. Sabelis

When phylogenetically close, two competing species may reproductively interfere, and thereby affect their population dynamics. We tested for reproductive interference (RI) between two congeneric haplo-diploid spider mites, Tetranychus evansi and Tetranychus urticae, by investigating their interspecific mating and their population dynamics when they competed on the same plants. They are both pests of tomato, but differ in the host plant defences that they suppress or induce. To reduce the effect of plant-mediated interaction, we used a mutant tomato plant lacking jasmonate-mediated anti-herbivore defences in the competition experiment. In addition, to manipulate the effect of RI, we introduced founder females already mated with conspecific males in mild RI treatments or founder, virgin females in strong RI treatments (in either case together with heterospecific and conspecific males). As females show first-male sperm precedence, RI should occur especially in the founder generation under strong RI treatments. We found that T. urticae outcompeted T. evansi in mild, but not in strong RI treatments. Thus, T. evansi interfered reproductively with T. urticae. This result was supported by crossing experiments showing frequent interspecific copulations, strong postmating reproductive isolation and a preference of T. evansi males to mate with T. urticae (instead of conspecific) females, whereas T. urticae males preferred conspecific females. We conclude that interspecific mating comes at a cost due to asymmetric mate preferences of males. Because RI by T. evansi can improve its competitiveness to T. urticae, we propose that RI partly explains why T. evansi became invasive in Europe where T. urticae is endemic.


New Phytologist | 2017

Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition

Bernardus C. J. Schimmel; Livia M. S. Ataide; Rachid Chafi; Carlos A. Villarroel; Juan M. Alba; Robert C. Schuurink; Merijn R. Kant

Summary Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae‐specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper‐suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper‐suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense‐suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper‐suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor‐induced overcompensation promotes competitive population growth of T. evansi on tomato.


Plant Physiology | 2014

Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds

Vasiliki Falara; Juan M. Alba; Merijn R. Kant; Robert C. Schuurink; Eran Pichersky

The genes encoding geranyllinalool synthases in Solanaceae represent an ancient branch of the terpene synthase gene family that likely diverged from the rest of the family prior to the split between the gymnosperm and angiosperm lineages. Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s–1. In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants.


Plant Science | 2016

Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring

Livia M. S. Ataide; Maria L. Pappas; Bernardus C. J. Schimmel; Antonio Lopez-Orenes; Juan M. Alba; Marcus V.A. Duarte; Angelo Pallini; Robert C. Schuurink; Merijn R. Kant

Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.


Frontiers in Plant Science | 2016

A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence

Rocío Escobar-Bravo; Juan M. Alba; Clara Pons; Antonio Granell; Merijn R. Kant; Enrique Moriones; Rafael Fernández-Muñoz

Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato.

Collaboration


Dive into the Juan M. Alba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Janssen

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Martijn Egas

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge