Juan M. Burgos
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan M. Burgos.
PLOS Neglected Tropical Diseases | 2009
Tomás Duffy; Margarita Bisio; Jaime Altcheh; Juan M. Burgos; Mirta Diez; Mariano J. Levin; Roberto Favaloro; Héctor Freilij; Alejandro G. Schijman
Background This report describes a real-time PCR (Q-PCR) strategy to quantify Trypanosoma cruzi (T. cruzi) DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence. Methodology/Principal Findings The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 106 and 107 for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R 2) of 0.998. In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR). The Q-PCR strategy was applied (1) to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2) to follow-up 38 of them receiving treatment with benznidazole, and (3) to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression. Conclusion/Significance All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.
Clinical Infectious Diseases | 2010
Juan M. Burgos; Mirta Diez; Carlos Vigliano; Margarita Bisio; Marikena G. Risso; Tomás Duffy; Carolina Cura; Betina Brusses; Liliana E. Favaloro; María Susana Leguizamón; Raúl Horacio Lucero; Rubén Laguens; Mariano J. Levin; Roberto Favaloro; Alejandro G. Schijman
BACKGROUND One hundred years after the discovery of Chagas disease, it remains a major neglected tropical disease. Chronic Chagas heart disease (cChHD) is the most severe manifestation. Heart transplantation is the proper treatment for end-stage heart failure, although reactivation of disease may result after receipt of immunosuppressive therapy. T. cruzi strains cluster into 6 discrete typing units (DTUs; I-VI) associated with different geographical distribution, transmission cycles and varying disease symptoms. In the southern cone of South America, T. cruzi II, V, and VI populations appear to be associated with Chagas disease and T. cruzi I with sylvatic cycles. METHODS Molecular characterization of DTUs, T. cruzi I genotypes (on the basis of spliced-leader gene polymorphisms), and minicircle signatures was conducted using cardiac explant specimens and blood samples obtained from a cohort of 16 Argentinean patients with cChHD who underwent heart transplantation and from lesion samples obtained from 6 of these patients who presented with clinical reactivation of Chagas disease. RESULTS Parasite persistence was associated with myocarditis progression, revealing T. cruzi I (genotype Id) in 3 explant samples and T. cruzi II, V, or VI in 5 explant samples. Post-heart transplantation follow-up examination of bloodstream DTUs identified T. cruzi I in 5 patients (genotypes Ia or Id) and T. cruzi II, V, or VI in 7 patients. T. cruzi I, V, and VI were detected in skin chagoma specimens, and T. cruzi V and VI were detected in samples obtained from patients with myocarditis reactivations. Multiple DTUs or genotypes at diverse body sites and polymorphic minicircle signatures at different cardiac regions revealed parasite histotropism. T. cruzi I infections clustered in northern Argentina (latitude, 23 degrees S-27 degrees S), whereas T. cruzi II, V, or VI DTUs were more ubiquitous. CONCLUSIONS Multiple DTUs coexist in patients with Chagas disease. The frequent finding of T. cruzi I associated with cardiac damage was astounding, revealing its pathogenic role in cChHD at the southern cone.
International Journal for Parasitology | 2010
Carolina Cura; Ana María Mejía-Jaramillo; Tomás Duffy; Juan M. Burgos; Marcela S. Rodriguero; Marta V. Cardinal; Sonia A. Kjos; Rodrigo Gurgel-Gonçalves; Denis Blanchet; Luis Miguel De Pablos; Nicolás Tomasini; Alexandre J. da Silva; Graciela Russomando; César Augusto Cuba Cuba; Christine Aznar; Teresa Abate; Mariano J. Levin; Antonio Osuna; Ricardo E. Gürtler; Patricio Diosque; Aldo Solari; Omar Triana-Chávez; Alejandro G. Schijman
The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harbouring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia+Tc Id, Tc Ia+Tc Ie and Tc Id+Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time.
Parasitology | 2006
P.L. Marcet; Tomás Duffy; M.V. Cardinal; Juan M. Burgos; Marta A. Lauricella; Mariano J. Levin; Uriel Kitron; Ricardo E. Gürtler; Alejandro G. Schijman
This study applied improved DNA extraction and polymerase chain reaction strategies for screening and identification of Trypanosoma cruzi lineages directly from faeces of triatomines collected in a well-defined rural area in northwestern Argentina. Amplification of the variable regions of the kinetoplastid minicircle genome (kDNA-PCR) was performed in faecal lysates from 33 microscope (MO)-positive and 93 MO-negative Triatoma infestans, 2 MO-positive and 38 MO-negative Triatoma guasayana and 2 MO-positive and 73 MO-negative Triatoma garciabesi. kDNA-PCR detected T. cruzi in 91% MO-positive and 7.5% MO-negative T. infestans, which were confirmed by amplification of the minicircle conserved region. In contrast, kDNA-PCR was negative in all faecal samples from the other triatomine species. A panel of PCR-based genomic markers (intergenic region of spliced-leader DNA, 24Salpha and 18S rRNA genes and A10 sequence) was implemented to identify the parasite lineages directly in DNA lysates from faeces and culture isolates from 28 infected specimens. Two were found to be infected with TCI, 24 with TCIIe, 1 with TCIId and 1 revealed a mixed TCI+TCII infection in the faecal sample whose corresponding culture only showed TCII, providing evidence of the advantages of direct typing of biological samples. This study provides an upgrade in the current diagnosis and lineage identification of T. cruzi in field-collected triatomines and shows T. cruziII strains as predominant in the region.
American Journal of Tropical Medicine and Hygiene | 2011
Marikena G. Risso; Paula A. Sartor; Juan M. Burgos; Luis Briceño; Eva Mary Rodríguez; Felipe Guhl; Omar Triana Chávez; Berta Espinoza; Víctor Monteón; Graciela Russomando; Alejandro G. Schijman; Oscar Bottasso; María Susana Leguizamón
Genotyping studies show a polarized geographic distribution of Trypanosoma cruzi lineages in humans. Here, we assessed their distribution along Latin America through an immunological approach we designated Western blot (WB) assay with Trypomastigote small-surface antigen (TSSA) I and TSSA II (TSSA-WB). These antigens are expressed by T. cruzi I (TCI; now TcI) and T. cruzi II (TCII; reclassified as TcII to TcVI) parasites. TSSA-WB showed good concordance with genotyping tests. An unexpected frequency of TSSA II recognition was observed in Colombia, Venezuela, and Mexico (northern region of Latin America). In Argentina and Paraguay (southern region), immunophenotyping confirmed the already reported TCII (TcII to TcVI) dominance. The lineage distribution between these regions showed significant difference but not among countries within them (except for Colombia and Venezuela). TSSA-WB shows TCII emergence in the northern region where TCI was reported as dominant or even as the unique T. cruzi lineage infecting humans.
Transactions of The Royal Society of Tropical Medicine and Hygiene | 2011
Margarita Bisio; María Elena Seidenstein; Juan M. Burgos; Griselda Ballering; Marikena G. Risso; Rosa Pontoriero; Marcelo Moreau; Jaime Altcheh; María Susana Leguizamón; Héctor Freilij; Marta Marceillac; Alejandro G. Schijman
Chagas disease ranks among the worlds most neglected tropical diseases and congenital transmission is increasingly responsible for urbanization of Chagas disease in non-endemic areas. Molecular assays for amplification and profiling of parasite minicircle DNA (kDNA) and identification of discrete typing units (DTUs) were prospectively conducted in bloodstream and placental samples from pregnant women cursing chronic Chagas disease residing in Buenos Aires city. Sensitivity of kDNA-PCR increased from 75.6% to 95.6% when one to three sequential blood samples were analysed. Congenital infection (CI) was diagnosed in 3 neonates born to kDNA-PCR positive mothers, one who had transmitted CI in a previous gestation, pointing to family clustering of congenital transmission. Fourteen of 44 placental samples were kDNA-PCR positive, all from non-CI transmitting women, indicating that placental PCR is not useful for CI diagnosis. Placental PCR positivity was not related to maternal bloodstream PCR positivity and placental parasitic subpopulations not observed in bloodstream were detected by minicircle signatures. PCR targeted to intergenic regions of spliced-leader genes and serological tests using trypomastigote small surface recombinant antigens showed predominance of DTU group TcII/V/VI and only one patient infected with TcI. To our knowledge, this is the first PCR-based follow-up study of bloodstream and placental T. cruzi infections during pregnancy, including identification of DTUs. kDNA-PCR assays in serial blood samples provided high sensitivity for detection of T. cruzi DNA in pregnant women with chronic Chagas disease.
PLOS ONE | 2013
Juan M. Burgos; Marikena G. Risso; Simone Frédérique Brenière; Christian Barnabé; Oscar Campetella; María Susana Leguizamón
Trypanosoma cruzi the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcII and TcVI aggressive and TcI low virulent strains and found variable aTS number (1–32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28–32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcII and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcIII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the “Two Hybridization” and the “Three Ancestor” was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.
Digestive Diseases and Sciences | 2000
Paula Fiorito; Juan M. Burgos; Mariano Fernandez Miyakawa; Marta Rivas; Germán Chillemi; Dario Berkowski; Elsa Zotta; Claudia Silberstein; Cristina Ibarra
Shiga toxin-producing Escherichia coli (STEC) colonize the lower segments of the human gastrointestinal tract, causing gastrointestinal and systemic diseases. In this study, the effects of Shiga toxin 2 (Stx2) on fluid absorption and ion transport in the human colon were examined. Net water movement (Jw) and short-circuit current (Isc) were simultaneously measured across the colonic mucosa incubated with crude or purified Stx2. Stx2 significantly inhibited the absorptive Jw with no effect on the basal Isc after 60 min of exposure. These effects may be due to the inhibition of a nonelectrogenic transport system present in the surface colonic villus cells. Morphological studies of the colonic mucosa treated with crude or purified Stx2 demonstrated a selective damage in the absorptive villus epithelial cells. These findings suggest that Stx2 inhibits water absorption across the human colon by acting on a specific cell population: the mature, differentiated absorptive villus epithelium.
Emerging Infectious Diseases | 2013
Margarita Bisio; Jaime Altcheh; Jorge Lattner; Guillermo Moscatelli; Valeria Fink; Juan M. Burgos; Facundo García Bournissen; Alejandro G. Schijman; Héctor Freilij
We report a case of chagasic meningoencephalitis reactivation in a pregnant woman co-infected with Trypanosoma cruzi and HIV that was successfully managed with benznidazole and highly active antiretroviral therapy. Early diagnosis enabled rapid specific treatment that improved the health of the patient and her baby.
Memorias Do Instituto Oswaldo Cruz | 2016
Leticia L. Niborski; Vanina Grippo; Sonia Lafon; Gabriela Levitus; Facundo Garcia-Bournissen; Juan Carlos Ramírez; Juan M. Burgos; Margarita Bisio; Natalia Juiz; Vilma Ayala; María Coppede; Verónica Herrera; Crescencia López; Ana Contreras; Karina A. Gómez; Juan C Elean; Hugo D Mujica; Alejandro G. Schijman; Mariano J. Levin; Silvia A. Longhi
This study aimed to evaluate well-documented diagnostic antigens, named B13, 1F8 and JL7 recombinant proteins, as potential markers of seroconversion in treated chagasic patients. Prospective study, involving 203 patients treated with benznidazole, was conducted from endemic areas of northern Argentina. Follow-up was possible in 107 out of them and blood samples were taken for serology and PCR assays before and 2, 3, 6, 12, 24 and 36 months after treatment initiation. Reactivity against Trypanosoma cruzi lysate and recombinant antigens was measured by ELISA. The rate of decrease of antibody titers showed nonlinear kinetics with an abrupt drop within the first three months after initiation of treatment for all studied antigens, followed by a plateau displaying a low decay until the end of follow-up. At this point, anti-B13, anti-1F8 and anti-JL7 titers were relatively close to the cut-off line, while anti-T. cruzi antibodies still remained positive. At baseline, 60.8% (45/74) of analysed patients tested positive for parasite DNA by PCR and during the follow-up period in 34 out of 45 positive samples (75.5%) could not be detected T. cruzi DNA. Our results suggest that these antigens might be useful as early markers for monitoring antiparasitic treatment in chronic Chagas disease.