Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan M. Falcon-Perez is active.

Publication


Featured researches published by Juan M. Falcon-Perez.


Journal of extracellular vesicles | 2015

Biological properties of extracellular vesicles and their physiological functions.

María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.


PLOS Biology | 2012

Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko

Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.


Journal of extracellular vesicles | 2015

Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.

Thomas Lener; Mario Gimona; Ludwig Aigner; Verena Börger; Edit I. Buzás; Giovanni Camussi; Nathalie Chaput; Devasis Chatterjee; Felipe A. Court; Hernando A. del Portillo; Lorraine O'Driscoll; Stefano Fais; Juan M. Falcon-Perez; Ursula Felderhoff-Mueser; Lorenzo Fraile; Yong Song Gho; André Görgens; Ramesh C. Gupta; An Hendrix; Dirk M. Hermann; Andrew F. Hill; Fred H. Hochberg; Peter A. Horn; Dominique P.V. de Kleijn; Lambros Kordelas; Boris W. Kramer; Eva Maria Krämer-Albers; Sandra Laner-Plamberger; Saara Laitinen; Tommaso Leonardi

Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.


Journal of Biological Chemistry | 2002

BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules

Juan M. Falcon-Perez; Marta Starcevic; Rashi Gautam; Esteban C. Dell'Angelica

Recent studies have led to the identification of a group of genes required for normal biogenesis of lysosome-related organelles such as melanosomes and platelet-dense granules. Two of these genes, which are defective in the pallid and muted mutant mouse strains, encode small, coiled-coil-forming proteins that display no homology to each other or to any known protein. We report that these two proteins, pallidin and muted, are components of a novel protein complex. We raised antibodies that allow for detection of pallidin from a wide variety of mammalian cells. Endogenous pallidin was distributed in both soluble and peripheral membrane protein fractions. Size-exclusion chromatography and sedimentation velocity analyses indicated that the bulk of cytosolic pallidin is a component of an asymmetric protein complex with a molecular mass of ∼200 kDa. We named this complex BLOC-1 (for biogenesis oflysosome-related organelles complex 1). Steady-state pallidin protein levels were reduced in fibroblasts derived from muted and reduced pigmentation mice, suggesting that the genes defective in these two mutant strains could encode components of BLOC-1 that are required for pallidin stability. Co-immunoprecipitation and immunodepletion experiments using an antibody to muted confirmed that this protein is a subunit of BLOC-1. Yeast two-hybrid analyses revealed that pallidin is capable of self-association through a region that contains its two coiled-coil forming domains. Unlike AP-3-deficient pearl fibroblasts, which display defects in intracellular zinc storage, zinc distribution was not noticeably affected in pallid or muted fibroblasts. Interestingly, immunofluorescence and in vitro binding experiments demonstrated that pallidin/BLOC-1 is able to associate with actin filaments. We propose that BLOC-1 mediates the biogenesis of lysosome-related organelles by a mechanism that may involve self-assembly and interaction with the actin cytoskeleton.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Biogenesis of lysosome-related organelles complex 3 (BLOC-3): A complex containing the Hermansky–Pudlak syndrome (HPS) proteins HPS1 and HPS4

Ramin Nazarian; Juan M. Falcon-Perez; Esteban C. Dell'Angelica

Hermansky–Pudlak syndrome (HPS) defines a group of autosomal recessive disorders characterized by deficiencies in lysosome-related organelles such as melanosomes and platelet-dense granules. Several HPS genes encode proteins of unknown function including HPS1, HPS3, and HPS4. Here we have identified and characterized endogenous HPS3 and HPS4 proteins from HeLa cells. Both proteins were found in soluble and membrane-associated forms. Sedimentation-velocity and coimmunoprecipitation experiments revealed that HPS4 but not HPS3 associates with HPS1 in a complex, which we term biogenesis of lysosome-related organelles complex 3 (BLOC-3). Mutant fibroblasts deficient in either HPS1 or HPS4 displayed abnormal localization of lysosomes and late endosomes, which were less concentrated at the juxtanuclear region in mutant cells than in control fibroblasts. The coat-color phenotype of young homozygous double-mutant mice deficient in subunits of BLOC-3 (HPS1) and BLOC-1 (pallidin) was indistinguishable from that of BLOC-1 single mutants. Taken together, these observations suggest that HPS1 and HPS4 are components of a protein complex that regulates the intracellular localization of lysosomes and late endosomes and may function in a BLOC-1-dependent pathway for melanosome biogenesis.


FEBS Letters | 2012

Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles

Diana Simón; Esther García-García; Felix Royo; Juan M. Falcon-Perez; Jesús Avila

Increasing amounts of tau protein were expressed in non‐neuronal cells. When intracellular amounts reached a threshold level, tau protein was released to the extracellular culture medium in association with membrane vesicles. Hence, we propose that tau might be secreted through membrane vesicles as a cellular mechanism to eliminate the excess of tau protein, thereby avoiding its toxicity.


Traffic | 2004

Characterization of BLOC-2, a complex containing the Hermansky-Pudlak syndrome proteins HPS3, HPS5 and HPS6.

Santiago M. Di Pietro; Juan M. Falcon-Perez; Esteban C. Dell'Angelica

Hermansky–Pudlak syndrome (HPS) defines a group of at least seven autosomal recessive disorders characterized by albinism and prolonged bleeding due to defects in the lysosome‐related organelles, melanosomes and platelet‐dense granules, respectively. Most HPS genes, including HPS3, HPS5 and HPS6, encode ubiquitously expressed novel proteins of unknown function. Here, we report the biochemical characterization of a stable protein complex named Biogenesis of Lysosome‐related Organelles Complex‐2 (BLOC‐2), which contains the HPS3, HPS5 and HPS6 proteins as subunits. The endogenous HPS3, HPS5 and HPS6 proteins from human HeLa cells coimmunoprecipitated with each other from crude extracts as well as from fractions resulting from size‐exclusion chromatography and density gradient centrifugation. The native molecular mass of BLOC‐2 was estimated to be 340 ± 64 kDa. As inferred from the biochemical properties of the HPS6 subunit, BLOC‐2 exists in a soluble pool and associates to membranes as a peripheral membrane protein. Fibroblasts deficient in the BLOC‐2 subunits HPS3 or HPS6 displayed normal basal secretion of the lysosomal enzyme β‐hexosaminidase. Our results suggest a common biological basis underlying the pathogenesis of HPS‐3, ‐5 and ‐6 disease.


Proteomics Clinical Applications | 2010

Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples

Javier Conde-Vancells; Eva Rodríguez-Suárez; Esperanza Gonzalez; Agustin Berisa; David Gil; Nieves Embade; Mikel Valle; Zigmund Luka; Felix Elortza; Conrad Wagner; Shelly C. Lu; José M. Mato; Juan M. Falcon-Perez

Purpose: There is a compelling clinical imperative to identify discerning molecular biomarkers of hepatic disease in order to inform the diagnosis, prognosis and treatment.


Nature Communications | 2014

Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion

Ana-Citlali Gradilla; Esperanza Gonzalez; Irene Seijo; Germán Andrés; Marcus Bischoff; Laura González-Méndez; Vanessa Sánchez; Ainhoa Callejo; Carmen Ibáñez; Milagros Guerra; João Ramalho Ortigão-Farias; James D. Sutherland; Monika González; Rosa Barrio; Juan M. Falcon-Perez; Isabel Guerrero

The Hedgehog signalling pathway is crucial for development, adult stem cell maintenance, cell migration and axon guidance in a wide range of organisms. During development, the Hh morphogen directs tissue patterning according to a concentration gradient. Lipid modifications on Hh are needed to achieve graded distribution, leading to debate about how Hh is transported to target cells despite being membrane-tethered. Cytonemes in the region of Hh signalling have been shown to be essential for gradient formation, but the carrier of the morphogen is yet to be defined. Here we show that Hh and its co-receptor Ihog are in exovesicles transported via cytonemes. These exovesicles present protein markers and other features of exosomes. Moreover, the cell machinery for exosome formation is necessary for normal Hh secretion and graded signalling. We propose Hh transport via exosomes along cytonemes as a significant mechanism for the restricted distribution of a lipid-modified morphogen.

Collaboration


Dive into the Juan M. Falcon-Perez's collaboration.

Top Co-Authors

Avatar

Esperanza Gonzalez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelly C. Lu

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Felix Elortza

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar Millet

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Arkaitz Carracedo

University of the Basque Country

View shared research outputs
Researchain Logo
Decentralizing Knowledge