Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan M. Orduña is active.

Publication


Featured researches published by Juan M. Orduña.


IEEE Transactions on Parallel and Distributed Systems | 2005

Improving the performance of distributed virtual environment systems

Pedro Morillo; Juan M. Orduña; Marcos Fernández; José Duato

The last years have witnessed a dramatic growth in the number as well as in the variety of distributed virtual environment systems. These systems allow multiple users, working on different client computers that are interconnected through different networks, to interact in a shared virtual world. One of the key issues in the design of scalable and cost-effective DVE systems is the partitioning problem. This problem consists of efficiently assigning the existing clients to the servers in the system and some techniques have been already proposed for solving it. This paper experimentally analyzes the correlation of the quality function proposed in the literature for solving the partitioning problem with the performance of DVE systems. Since the results show an absence of correlation, we also propose the experimental characterization of DVE systems. The results show that the reason for that absence of correlation is the nonlinear behavior of DVE systems with regard to the number of clients in the system. DVE systems reach saturation when any of the servers reaches 100 percent of CPU utilization. The system performance greatly decreases if this limit is exceeded in any server. Also, as a direct application of these results, we present a partitioning method that is targeted to keep all the servers in the system below a certain threshold value of CPU utilization, regardless of the amount of network traffic. Evaluation results show that the proposed partitioning method can improve DVE system performance, regardless of both the movement pattern of clients and the initial distribution of clients in the virtual world.


Applied Soft Computing | 2010

A comparative study of partitioning methods for crowd simulations

Guillermo Vigueras; Miguel Lozano; Juan M. Orduña; Francisco Grimaldo

The simulation of large crowds of autonomous agents with realistic behavior is still a challenge for several computer research communities. In order to handle large crowds, some scalable architectures have been proposed. Nevertheless, the effective use of distributed systems requires the use of partitioning methods that can properly distribute the workload generated by agents among the existing distributed resources. In this paper, we analyze the use of irregular shape regions (convex hulls) for solving the partitioning problem. We have compared a partitioning method based on convex hulls with two techniques that use rectangular regions. The performance evaluation results show that the convex hull method outperforms the rest of the considered methods in terms of both fitness function values and execution times, regardless of the movement pattern followed by the agents. These results show that the shape of the regions in the partition can improve the performance of the partitioning method, rather than the heuristic method used.


IEEE Transactions on Parallel and Distributed Systems | 2007

A Latency-Aware Partitioning Method for Distributed Virtual Environment Systems

Pedro Morillo; Silvia Rueda; Juan M. Orduña; José Duato

Distributed virtual environment (DVE) systems allow multiple users working on different client computers interconnected through different networks to interact in a shared virtual world. In these systems, latency is crucial for providing an acceptable quality of service (QoS), since it determines how fast client computers are reported about changes in the shared virtual scene produced by other client computers. This paper presents in a unified manner a partitioning approach for providing a latency below a threshold to the maximum number of users as possible in DVE systems. This partitioning approach searches the assignment of avatars, which represents the best trade-off among system latency, system throughput, and partitioning efficiency when solving the partitioning problem. Evaluation results show that the proposed approach not only maximizes system throughput, but also allows the system to satisfy, if possible, any specific latency requirement needed for providing QoS. This improvement is achieved without decreasing either image resolution or quality of animation, and it can be used together with other techniques already proposed. Therefore, it can contribute to provide QoS in DVEs.


international parallel and distributed processing symposium | 2009

A multi-objective strategy for concurrent mapping and routing in networks on chip

Rafael Tornero; Valentino Sterrantino; Maurizio Palesi; Juan M. Orduña

The design flow of network-on-chip (NoCs) include several key issues. Among other parameters, the decision of where cores have to be topologically mapped and also the routing algorithm represent two highly correlated design problems that must be carefully solved for any given application in order to optimize several different performance metrics. The strong correlation between the different parameters often makes that the optimization of a given performance metric has a negative effect on a different performance metric. In this paper we propose a new strategy that simultaneously refines the mapping and the routing function to determine the Pareto optimal configurations which optimize average delay and routing robustness. The proposed strategy has been applied on both synthetic and real traffic scenarios. The obtained results show how the solutions found by the proposed approach outperforms those provided by other approaches proposed in literature, in terms of both performance and fault tolerance.


european conference on parallel processing | 2003

On the Characterization of Distributed Virtual Environment Systems

Pedro Morillo; Juan M. Orduña; Marcos Fernández; José Duato

Distributed Virtual Environment systems have experienced a spectacular growth last years. One of the key issues in the design of scalable and cost-effective DVE systems is the partitioning problem. This problem consists of efficiently assigning clients (3-D avatars) to the servers in the system, and some techniques have been already proposed for solving it.


european conference on parallel processing | 2008

A Communication-Aware Topological Mapping Technique for NoCs

Rafael Tornero; Juan M. Orduña; Maurizio Palesi; José Duato

Networks---on---Chip (NoCs) have been proposed as a promising solution to the complex on-chip communication problems derived from the increasing number of processor cores. The design of NoCs involves several key issues, being the topological mapping (the mapping of the Intellectual Properties (IPs) to network nodes) one of them. Several proposals have been focused on topological mapping last years, but they require the experimental validation of each mapping considered. In this paper, we propose a communication-aware topological mapping technique for NoCs. This technique is based on the experimental correlation of the network model with the actual network performance, thus avoiding the need to experimentally evaluate each mapping explored. The evaluation results show that the proposed technique can provide better performance than the currently existing techniques (in terms of both network latency and energy consumption). Additionally, it can be used for both regular and irregular topologies.


computer graphics international | 2006

Providing full awareness to distributed virtual environments based on peer-to-peer architectures

Pedro Morillo; W. Moncho; Juan M. Orduña; José Duato

In recent years, large scale distributed virtual environments (DVEs) have become a major trend in distributed applications, mainly due to the enormous popularity of multiplayer online games in the entertainment industry. Since architectures based on networked servers seems to be not scalable enough to support massively multiplayer applications, peer-to-peer (P2P) architectures have been proposed as an efficient and truly scalable solution for this kind of systems. However, the main challenge of P2P architectures consists of providing each avatar with updated information about which other avatars are its neighbors. We have denoted this problem as the awareness problem. Although some proposals have been made, none of them provide total awareness to avatars under any situation. This paper presents a new awareness method based on unicast communication that is capable of providing awareness to 100% of avatars, regardless of both their location and their movement pattern in the virtual world. Therefore, it allows large scale DVEs based on P2P architectures to properly scale with the number of users while fully providing awareness to all of them.


ieee virtual reality conference | 2007

On the Characterization of Peer-To-Peer Distributed Virtual Environments

Silvia Rueda; Pedro Morillo; Juan M. Orduña; José Duato

Large scale distributed virtual environments (DVEs) have become a major trend in distributed applications, mainly due to the enormous popularity of multi-player online games in the entertainment industry. Since architectures based on networked servers seem to be not scalable enough to support massively multi-player applications, peer-to-peer (P2P) architectures have been proposed as an efficient and truly scalable solution for this kind of systems. However, in order to design efficient DVEs based on peer-to-peer architectures these systems must be characterized, measuring the impact of different client behaviors on system performance. This paper presents the experimental characterization of peer-to-peer distributed virtual environments in regard to well-known performance metrics in distributed systems. Characterization results show that system saturation is inherently avoided due to the peer-to-peer scheme, as it could be expected. Also, these results show that the saturation of a given client exclusively has an effect on the surrounding clients in the virtual world, having no noticeable effect at all on the rest of avatars. Finally, the characterization results show that the response time offered to client computers greatly depends on the number of new connections that these clients have to make when new neighbors appear in the virtual world. These results can be used as the basis for an efficient design of peer-to-peer DVE systems.


Computers in Industry | 2013

A new AR authoring tool using depth maps for industrial procedures

Jesús Gimeno; Pedro Morillo; Juan M. Orduña; Marcos Fernández

Several augmented reality systems have been proposed for different target fields such as medical, cultural heritage and military. However, most of the current AR authoring tools are actually programming interfaces that are exclusively suitable for programmers. In this paper, we propose an AR authoring tool which provides advanced visual effect, such as occlusion or media contents. This tool allows non-programming users to develop low-cost AR applications, specially oriented to on-site assembly and maintenance/repair tasks. A new 3D edition interface is proposed, using photos and Kinect depth information to improve 3D scenes composition. In order to validate our AR authoring tool, two evaluations have been performed, to test the authoring process and the task execution using AR. The evaluation results show that overlaying 3D instructions on the actual work pieces reduces the error rate for an assembly task by more than a 75%, particularly diminishing cumulative errors common in sequential procedures. Also, the results show how the new edition interface proposed, improves the 3D authoring process making possible create more accurate AR scenarios and 70% faster.


Journal of Network and Computer Applications | 2009

A new system architecture for crowd simulation

Miguel Lozano; Pedro Morillo; Juan M. Orduña; Vicente Cavero; Guillermo Vigueras

Crowd simulation requires both rendering visually plausible images and managing the behavior of autonomous agents. Therefore, these applications need an efficient design that allows them to simultaneously handle these two requirements. Although several proposals have focused on the software architectures for these systems, no proposals have focused on the computer systems supporting them. In this paper, we analyze the computer architectures used in the literature to support distributed virtual environments. Also, we propose a distributed computer architecture which is efficient enough to support simulations of thousand of autonomous agents. This proposal consists of a cluster of interconnected computers in order to improve flexibility and robustness, as well as a hierarchical software architecture that efficiently provides consistency. Performance evaluation results show that the trade-off between flexibility and consistency allows to efficiently manage thousands of autonomous agents. Therefore, this network-based system architecture can provide the required scalability for large-scale crowd simulations.

Collaboration


Dive into the Juan M. Orduña's collaboration.

Top Co-Authors

Avatar

Pedro Morillo

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

José Duato

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge