Juan Mosqueda
Autonomous University of Queretaro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Mosqueda.
Infection and Immunity | 2002
Juan Mosqueda; Terry F. McElwain; David Stiller; Guy H. Palmer
ABSTRACT We examined Babesia bovis sporozoites for the expression of two molecules, merozoite surface antigen 1 (MSA-1) and rhoptry-associated protein 1 (RAP-1), that are postulated to be involved in the invasion of host erythrocytes. Both MSA-1 and RAP-1 were transcribed and expressed in infectious sporozoites. Importantly, monospecific MSA-1 and RAP-1 antisera each inhibited sporozoite invasion of erythrocytes in vitro. This is the first identification of antigens expressed in Babesia sp. sporozoites and establishes that, at least in part, sporozoites and merozoites share common targets of antibody mediated inhibition of erythrocyte invasion.
Infection and Immunity | 2002
Juan Mosqueda; Terry F. McElwain; Guy H. Palmer
ABSTRACT The Babesia bovis merozoite surface antigen 2 (MSA-2) locus encodes four proteins, MSA-2a1, -2a2, -2b, and -2c. With the use of specific antibodies, each MSA-2 protein was shown to be expressed on the surface of live extracellular merozoites and coexpression on single merozoites was confirmed. Individual antisera against MSA-2a, MSA-2b, and MSA-2c significantly inhibited merozoite invasion of bovine erythrocytes. As tick-derived sporozoites also directly invade erythrocytes, expression of each MSA-2 protein on the sporozoite surface was examined and verified. Finally, statistically significant inhibition of sporozoite binding to the erythrocytes was demonstrated by using antisera specific for MSA-2a, MSA-2b, and MSA-2c. These results indicate an important role for MSA-2 proteins in the initial binding and invasion of host erythrocytes and support the hypothesis that sporozoites and merozoites use common surface molecules in erythrocyte invasion.
Infection and Immunity | 2003
Junzo Norimine; Juan Mosqueda; Carlos E. Suarez; Guy H. Palmer; Terry F. McElwain; Gabriel Mbassa; Wendy C. Brown
ABSTRACT Rhoptry-associated protein 1 (RAP-1) is a targeted vaccine antigen for Babesia bovis and Babesia bigemina infections of cattle. The 60-kDa B. bovis RAP-1 is recognized by antibodies and T lymphocytes from cattle that recovered from infection and were immune to subsequent challenge. Immunization with native or recombinant protein was reported to reduce parasitemias in challenged animals. We recently reported that the NT domain of B. bovis RAP-1 contained immunodominant T-cell epitopes, whereas the repeat-rich CT domain was less immunostimulatory for T lymphocytes from cattle immune to B. bovis. The present study was therefore designed to test the hypothesis that the NT region of RAP-1, used as a vaccine with interleukin-12 and RIBI (catalog no. R-730; RIBI Immunochem Research, Inc., Hamilton, Mont. [now Corixa, Seattle, Wash.]) adjuvant to induce a type 1 response, would prime calves for antibody and T-helper cell responses comparable to or greater than those induced by full-length RAP-1 containing the C-terminal repeats. Furthermore, a type 1 immune response to RAP-1 was hypothesized to induce protection against challenge. Following four inoculations of either recombinant full-length RAP-1 or RAP-1 NT protein, RAP-1-specific immunoglobulin G (IgG) titers, T-lymphocyte proliferation, and gamma interferon production were similar. Similar numbers of NT region peptides were recognized. However, in spite of the presence of strong RAP-1-specific IgG and CD4+-T-lymphocyte responses that were recalled upon challenge, neither antigen stimulated a protective immune response. We conclude that successful priming of calves with recombinant RAP-1 and adjuvants that elicit strong Th1 cell and IgG responses is insufficient to protect calves against virulent B. bovis challenge.
Vaccine | 2013
Octavio Merino; Sandra Antunes; Juan Mosqueda; Juan A. Moreno-Cid; José M. Pérez de la Lastra; Rodrigo Rosario-Cruz; Sergio García Rodríguez; Ana Domingos; José de la Fuente
Tick-borne pathogens cause diseases that greatly impact animal health and production worldwide. The ultimate goal of tick vaccines is to protect against tick-borne diseases through the control of vector infestations and reducing pathogen infection and transmission. Tick genetic traits are involved in vector-pathogen interactions and some of these molecules such as Subolesin (SUB) have been shown to protect against vector infestations and pathogen infection. Based on these premises, herein we characterized the efficacy of cattle vaccination with tick proteins involved in vector-pathogen interactions, TROSPA, SILK, and Q38 for the control of cattle tick, Rhipicephalus (Boophilus) microplus infestations and infection with Anaplasma marginale and Babesia bigemina. SUB and adjuvant/saline placebo were used as positive and negative controls, respectively. The results showed that vaccination with Q38, SILK and SUB reduced tick infestations and oviposition with vaccine efficacies of 75% (Q38), 62% (SILK) and 60% (SUB) with respect to ticks fed on placebo control cattle. Vaccination with TROSPA did not have a significant effect on any of the tick parameters analyzed. The results also showed that vaccination with Q38, TROSPA and SUB reduced B. bigemina DNA levels in ticks while vaccination with SILK and SUB resulted in lower A. marginale DNA levels when compared to ticks fed on placebo control cattle. The positive correlation between antigen-specific antibody titers and reduction of tick infestations and pathogen infection strongly suggested that the effect of the vaccine was the result of the antibody response in vaccinated cattle. Vaccination and co-infection with A. marginale and B. bigemina also affected the expression of genes encoding for vaccine antigens in ticks fed on cattle. These results showed that vaccines using tick proteins involved in vector-pathogen interactions could be used for the dual control of tick infestations and pathogen infection.
Infection and Immunity | 2004
Junzo Norimine; Juan Mosqueda; Guy H. Palmer; Harris A. Lewin; Wendy C. Brown
ABSTRACT Babesia bovis small heat shock protein (Hsp20) is recognized by CD4+ T lymphocytes from cattle that have recovered from infection and are immune to challenge. This candidate vaccine antigen is related to a protective antigen of Toxoplasma gondii, Hsp30/bag1, and both are members of the α-crystallin family of proteins that can serve as molecular chaperones. In the present study, immunofluorescence microscopy determined that Hsp20 is expressed intracellularly in all merozoites. Importantly, Hsp20 is also expressed by tick larval stages, including sporozoites, so that natural tick-transmitted infection could boost a vaccine-induced response. The predicted amino acid sequence of Hsp20 from merozoites is completely conserved among different B. bovis strains. To define the location of CD4+ T-cell epitopes for inclusion in a multiepitope peptide or minigene vaccine construct, truncated recombinant Hsp20 proteins and overlapping peptides were tested for their ability to stimulate T cells from immune cattle. Both amino-terminal (amino acids [aa] 1 to 105) and carboxy-terminal (aa 48 to 177) regions were immunogenic for the majority of cattle in the study, stimulating strong proliferation and IFN-γ production. T-cell lines from all individuals with distinct DRB3 haplotypes responded to aa 11 to 62 of Hsp20, which contained one or more immunodominant epitopes for each animal. One epitope, DEQTGLPIKS (aa 17 to 26), was identified by T-cell clones. The presence of strain-conserved T helper cell epitopes in aa 11 to 62 of the ubiquitously expressed Hsp20 that are presented by major histocompatibility complex class II molecules represented broadly in the Holstein breed supports the inclusion of this region in vaccine constructs to be tested in cattle.
Journal of Wildlife Diseases | 2007
Antonio Cantu; J. Alfonso Ortega-S; Juan Mosqueda; Zeferino García-Vázquez; Scott E. Henke; John E. George
The suitability of white-tailed deer (Odocoileus virginianus) as hosts for the cattle ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus) annulatus, has been well documented. These ticks have a wide host range, and both transmit Babesia bovis and Babesia bigemina, the agents responsible for bovine babesiosis. Although this disease and its vectors have been eradicated from the United States and some states in northern Mexico, it still is a problem in other Mexican states. It is not known if wild cervids like white-tailed deer can act as reservoirs for bovine babesiosis. The purpose of this study was to determine if B. bovis and B. bigemina or antibodies against them occur in white-tailed deer in the states of Nuevo Leon and Tamaulipas, Mexico. Twenty blood samples from white-tailed deer from two ranches were collected and tested with a nested polymerase chain reaction (nested PCR) and indirect immunofluorescence antibody test (IFAT) for B. bovis and B. bigemina. Eleven samples were positive for B. bigemina and four for B. bovis by nested PCR; amplicon sequences were identical to those reported in GenBank for B. bovis (Rap 1) and B. bigemina. Results of the IFA test showed the presence of specific antibodies in serum samples. This is the first report of the presence of B. bovis and B. bigemina in white-tailed deer using these techniques and underscores the importance of cervids as possible reservoirs for bovine babesiosis.
Annals of the New York Academy of Sciences | 1998
Julio V. Figueroa; Jesus A. Alvarez; Juan A. Ramos; Edmundo E. Rojas; C. Santiago; Juan Mosqueda; Carlos A. Vega; Gerald M. Buening
ABSTRACT: A multiplex PCR/DNA probe assay was used to monitor Babesia bovis, B. bigemina and Anaplasma marginale infection in cattle introduced to a Boophilus microplus‐infested area in Veracruz, Mexico. Eight intact, 18‐month‐old, cross‐bred beef cattle (four naive, Group A; four Babesia species‐premunized, Group B) were immediately exposed to ticks after arrival and were clinically monitored from day 6 to day 98 post‐exposure (PE) to ticks. Blood sample analysis for DNA detection by the MPCR/DNA probe assay showed that Group A animals were infected with B. bovis from day 11 up to day 22 PE, requiring treatment on days 17‐20. Group B animals were detected positive to B. bovis on days 17‐20, did not require treatment and remained persistently infected from days 70 to 84 PE. Treatment of Group A animals delayed the infection with B. bigemina. These animals became positive to the parasite on days 63‐77 PE. In contrast, Group B animals (untreated) showed B. bigemina infection on days 21‐26 and 63‐84 PE. One animal was positive for A. marginale infection on days 63‐66 PE, the rest of the animals became so on days 80‐98 PE. All infected animals required treatment with oxytetracycline. Monitoring the triple hemoparasite infection with the MPCR/DNA probe assay provided important epidemiological information. Thus, precautionary measures can be established when cattle are moved to a babesiosis/anaplasmosis risk area.
Parasites & Vectors | 2014
Sandra Antunes; Octavio Merino; Juan Mosqueda; Juan A. Moreno-Cid; Lesley Bell-Sakyi; Rennos Fragkoudis; Sabine Weisheit; José M. Pérez de la Lastra; Pilar Alberdi; Ana Domingos; José de la Fuente
BackgroundTicks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates.MethodsIn this study, we selected proteins involved in tick-Anaplasma (Subolesin and SILK) and tick-Babesia (TROSPA) interactions and used in vitro capillary feeding to characterize their potential as antigens for the control of cattle tick infestations and infection with Anaplasma marginale and Babesia bigemina. Purified rabbit polyclonal antibodies were generated against recombinant SUB, SILK and TROSPA and added to uninfected or infected bovine blood to capillary-feed female Rhipicephalus (Boophilus) microplus ticks. Tick weight, oviposition and pathogen DNA levels were determined in treated and control ticks.ResultsThe specificity of purified rabbit polyclonal antibodies against tick recombinant proteins was confirmed by Western blot and against native proteins in tick cell lines and tick tissues using immunofluorescence. Capillary-fed ticks ingested antibodies added to the blood meal and the effect of these antibodies on tick weight and oviposition was shown. However, no effect was observed on pathogen DNA levels.ConclusionsThese results highlighted the advantages and some of the disadvantages of in vitro tick capillary feeding for the characterization of candidate tick protective antigens. While an effect on tick weight and oviposition was observed, the effect on pathogen levels was not evident probably due to high tick-to-tick variations among other factors. Nevertheless, these results together with previous results of RNA interference functional studies suggest that these proteins are good candidate vaccine antigens for the control of R. microplus infestations and infection with A. marginale and B. bigemina.
Infection and Immunity | 2012
Massaro W. Ueti; Yunbing Tan; Shira L. Broschat; Elizabeth J. Castañeda Ortiz; Minerva Camacho-Nuez; Juan Mosqueda; Glen A. Scoles; Matthew Grimes; Kelly A. Brayton; Guy H. Palmer
ABSTRACT Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity.
Annals of the New York Academy of Sciences | 2008
Alma D. Genis; Juan Mosqueda; Verónica M. Borgonio; Alfonso Falcon; Antonio Alvarez; Minerva Camacho; María de Lourdes Muñoz; Julio V. Figueroa
Variable merozoite surface antigens of Babesia bovis are exposed glycoproteins having a role in erythrocyte invasion. Members of this gene family include msa‐1 and msa‐2 (msa‐2c, msa‐2a1, msa‐2a2, and msa‐2b). Small subunit ribosomal (ssr)RNA gene is subject to evolutive pressure and has been used in phylogenetic studies. To determine the phylogenetic relationship among B. bovis Mexican isolates using different genetic markers, PCR amplicons, corresponding to msa‐1, msa‐2c, msa‐2b, and ssrRNA genes, were cloned and plasmids carrying the corresponding inserts were sequenced. Comparative analysis of nucleotide and deduced amino acid sequences revealed distinct degrees of variability and identity among the coding gene sequences obtained from 12 geographically different B. bovis isolates and a reference strain. Overall sequence identities of 47.7%, 72.3%, 87.7%, and 94% were determined for msa‐1, msa‐2b, msa‐2c, and ssrRNA, respectively. A robust phylogenetic tree was obtained with msa‐2b sequences. The phylogenetic analysis suggests that Mexican B. bovis isolates group in clades not concordant with the Mexican geography. However, the Mexican isolates group together in an American clade separated from the Australian clade. Sequence heterogeneity in msa‐1, msa‐2b, and msa‐2c coding regions of Mexican B. bovis isolates present in different geographical regions can be a result of either differential evolutive pressure or cattle movement from commercial trade.