Juan P. Bustamante
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan P. Bustamante.
PLOS ONE | 2012
Agnese Marcelli; Stefania Abbruzzetti; Juan P. Bustamante; Alessandro Feis; Alessandra Bonamore; Alberto Boffi; Cristina Gellini; Pier Remigio Salvi; Darío A. Estrin; Stefano Bruno; Cristiano Viappiani; Paolo Foggi
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
FEBS Journal | 2015
Daniela Giordano; Alessandra Pesce; Leonardo Boechi; Juan P. Bustamante; Elena Caldelli; Barry D. Howes; Alessia Riccio; Guido di Prisco; Marco Nardini; Darío A. Estrin; Giulietta Smulevich; Martino Bolognesi; Cinzia Verde
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two‐on‐two α‐helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group‐II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph‐2/2HbO), a cold‐adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph‐2/2HbO aquo‐met crystal structure (at 2.21 Å resolution) shows typical features of group‐II truncated hemoglobins, namely the two‐on‐two α‐helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal‐site hydrogen‐bonded network that includes water molecules and several distal‐site residues, including His(58)CD1. Analysis of Ph‐2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph‐2/2HbO can access diverse heme ligation states. Among these, detection of a low‐spin heme hexa‐coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme‐Fe ligand. Altogether, the results show that Ph‐2/2HbO maintains the general structural features of group‐II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Journal of Physical Chemistry B | 2014
Juan P. Bustamante; Stefania Abbruzzetti; Agnese Marcelli; Diego Fernando Gauto; Leonardo Boechi; Alessandra Bonamore; Alberto Boffi; Stefano Bruno; Alessandro Feis; Paolo Foggi; Darío A. Estrin; Cristiano Viappiani
Internal water molecules play an active role in ligand uptake regulation, since displacement of retained water molecules from protein surfaces or cavities by incoming ligands can promote favorable or disfavorable effects over the global binding process. Detection of these water molecules by X-ray crystallography is difficult given their positional disorder and low occupancy. In this work, we employ a combination of molecular dynamics simulations and ligand rebinding over a broad time range to shed light into the role of water molecules in ligand migration and binding. Computational studies on the unliganded structure of the thermostable truncated hemoglobin from Thermobifida fusca (Tf-trHbO) show that a water molecule is in the vicinity of the iron heme, stabilized by WG8 with the assistance of YCD1, exerting a steric hindrance for binding of an exogenous ligand. Mutation of WG8 to F results in a significantly lower stabilization of this water molecule and in subtle dynamical structural changes that favor ligand binding, as observed experimentally. Water is absent from the fully hydrophobic distal cavity of the triple mutant YB10F-YCD1F-WG8F (3F), due to the lack of residues capable of stabilizing it nearby the heme. In agreement with these effects on the barriers for ligand rebinding, over 97% of the photodissociated ligands are rebound within a few nanoseconds in the 3F mutant case. Our results demonstrate the specific involvement of water molecules in shaping the energetic barriers for ligand migration and binding.
Biochimica et Biophysica Acta | 2013
Francesco P. Nicoletti; Enrica Droghetti; Barry D. Howes; Juan P. Bustamante; Alessandra Bonamore; Natascia Sciamanna; Darío A. Estrin; Alessandro Feis; Alberto Boffi; Giulietta Smulevich
The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe-OH(-) and Fe-CN(-) frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH(-) ligand, CN(-) binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
PLOS Computational Biology | 2016
Juan P. Bustamante; Leandro G. Radusky; Leonardo Boechi; Darío A. Estrin; Arjen ten Have; Marcelo A. Martí
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.
Biochemistry | 2014
Francesco P. Nicoletti; Juan P. Bustamante; Enrica Droghetti; Barry D. Howes; Maria Fittipaldi; Alessandra Bonamore; Paola Baiocco; Alessandro Feis; Alberto Boffi; Darío A. Estrin; Giulietta Smulevich
The unique architecture of the active site of Thermobifida fusca truncated hemoglobin (Tf-trHb) and other globins belonging to the same family has stimulated extensive studies aimed at understanding the interplay between iron-bound ligands and distal amino acids. The behavior of the heme-bound hydroxyl, in particular, has generated much interest in view of the relationships between the spin-state equilibrium of the ferric iron atom and hydrogen-bonding capabilities (as either acceptor or donor) of the OH(-) group itself. The present investigation offers a detailed molecular dynamics and spectroscopic picture of the hydroxyl complexes of the WT protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. Each mutant is characterized by a complex interplay of interactions in which the hydroxyl ligand may act both as a H-bond donor or acceptor. The resonance Raman stretching frequencies of the Fe-OH moiety, together with electron paramagnetic resonance spectra and MD simulations on each mutant, have enabled the identification of specific contributions to the unique ligand-inclusive H-bond network typical of this globin family.
F1000Research | 2015
Ignacio Boron; Juan P. Bustamante; Kelly S. Davidge; Sandip K. Singh; Lesley A.H. Bowman; Mariana Tinajero-Trejo; Sebastián Carballal; Rafael Radi; Robert K. Poole; Kanak L. Dikshit; Darío A. Estrin; Marcelo A. Martí; Leonardo Boechi
Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and (•)NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify (•)NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, (•)NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.
FEBS Journal | 2016
Alessandra Pesce; Juan P. Bustamante; Axel Bidon-Chanal; Leonardo Boechi; Darío A. Estrin; F. J. Luque; Anne Sebilo; Michel Guertin; Martino Bolognesi; Paolo Ascenzi; Marco Nardini
A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2‐dependent NO‐dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two‐tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N‐terminus of a short pre‐A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN‐ΔpreA, lacking the pre‐A region, at a resolution of 1.53 Å. We show that removal of the pre‐A region results in long range effects on the protein C‐terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN‐ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2‐ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN‐ΔpreA‐Fe(III) is four‐fold lower relative to the full‐length protein, and that NO scavenging by Mt2/2HbN‐ΔpreA‐Fe(II)‐O2 is reduced by 35‐fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre‐A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages.
Bioinformatics | 2016
Juan P. Bustamante; María E. Szretter; Mariela Sued; Marcelo A. Martí; Darío A. Estrin; Leonardo Boechi
MOTIVATION Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. RESULTS We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Biochimica et Biophysica Acta | 2014
Juan P. Bustamante; Alessandra Bonamore; Alejandro D. Nadra; Natascia Sciamanna; Alberto Boffi; Darío A. Estrin; Leonardo Boechi
BACKGROUND Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. METHODS We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. RESULTS The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. CONCLUSIONS This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the proteins thermostability. GENERAL SIGNIFICANCE These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.