Juan Pablo Tosar
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Pablo Tosar.
Journal of extracellular vesicles | 2017
Bogdan Mateescu; Emma J. K. Kowal; Bas W. M. van Balkom; Sabine Bartel; Suvendra N. Bhattacharyya; Edit I. Buzás; Amy H. Buck; Paola de Candia; Franklin Wang-Ngai Chow; Saumya Das; Tom A. P. Driedonks; Lola Fernández-Messina; Franziska Haderk; Andrew F. Hill; J Jones; Kendall Van Keuren-Jensen; Charles P. Lai; Cecilia Lässer; Italia Di Liegro; Taral R. Lunavat; Magdalena J. Lorenowicz; Sybren L. N. Maas; Imre Mäger; María Mittelbrunn; Stefan Momma; Kamalika Mukherjee; Muhammad Nawaz; D. Michiel Pegtel; Michael W. Pfaffl; Raymond M. Schiffelers
ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Nucleic Acids Research | 2015
Juan Pablo Tosar; Fabiana Gámbaro; Julia Sanguinetti; Braulio Bonilla; Kenneth W. Witwer; Alfonso Cayota
Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19–60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5′ tRNA halves and 5′ RNA Y4-derived fragments of 31–33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space.
RNA | 2014
Juan Pablo Tosar; Carlos Rovira; Hugo Naya; Alfonso Cayota
The report that exogenous plant miRNAs are able to cross the mammalian gastrointestinal tract and exert gene-regulation mechanism in mammalian tissues has yielded a lot of controversy, both in the public press and the scientific literature. Despite the initial enthusiasm, reproducibility of these results was recently questioned by several authors. To analyze the causes of this unease, we searched for diet-derived miRNAs in deep-sequencing libraries performed by ourselves and others. We found variable amounts of plant miRNAs in publicly available small RNA-seq data sets of human tissues. In human spermatozoa, exogenous RNAs reached extreme, biologically meaningless levels. On the contrary, plant miRNAs were not detected in our sequencing of human sperm cells, which was performed in the absence of any known sources of plant contamination. We designed an experiment to show that cross-contamination during library preparation is a source of exogenous RNAs. These contamination-derived exogenous sequences even resisted oxidation with sodium periodate. To test the assumption that diet-derived miRNAs were actually contamination-derived, we sought in the literature for previous sequencing reports performed by the same group which reported the initial finding. We analyzed the spectra of plant miRNAs in a small RNA sequencing study performed in amphioxus by this group in 2009 and we found a very strong correlation with the plant miRNAs which they later reported in human sera. Even though contamination with exogenous sequences may be easy to detect, cross-contamination between samples from the same organism can go completely unnoticed, possibly affecting conclusions derived from NGS transcriptomics.
Gene | 2010
Maria R. Garcia Silva; Juan Pablo Tosar; Magali Frugier; Sergio Pantano; Braulio Bonilla; Luis Esteban; Esteban Serra; Carlos Rovira; Carlos Robello; Alfonso Cayota
Over the last years an expanding family of small non-coding RNAs (sRNA) has been identified in eukaryotic genomes which behave as sequence-specific triggers for mRNA degradation, translation repression, heterochromatin formation and genome stability. To achieve their effectors functions, sRNAs associate with members of the Argonaute protein family. Argonaute proteins are segregated into three paralogous groups: the AGO-like subfamily, the PIWI-like subfamily, and the WAGO subfamily (for Worm specific AGO). Detailed phylogenetic analysis of the small RNA-related machinery components revealed that they can be traced back to the common ancestor of eukaryotes. However, this machinery seems to be lost or excessively simplified in some unicellular organisms such as Saccharomyces cerevisiae, Trypanosoma cruzi, Leishmania major and Plasmodium falciparum which are unable to utilize dsRNA to trigger degradation of target RNAs. We reported here a unique ORF encoding for an AGO/PIWI protein in T. cruzi which was expressed in all stages of its life cycle at the transcript as well as the protein level. Database search for remote homologues, revealed the presence of a divergent PAZ domain adjacent to the well supported PIWI domain. Our results strongly suggested that this unique AGO/PIWI protein from T. cruzi is a canonical Argonaute in terms of its domain architecture. We propose to reclassify all Argonaute members from trypanosomatids as a distinctive phylogenetic group representing a new subfamily of Argonaute proteins and propose the generic designation of AGO/PIWI-tryp to identify them. Inside the Trypanosomatid-specific node, AGO/PIWI-tryps were clearly segregated into two paralog groups designated as AGO-tryp and PIWI-tryp according to the presence or absence of a functional link with RNAi-related phenomena, respectively.
Journal of extracellular vesicles | 2017
Juan Pablo Tosar; Alfonso Cayota; Erez Eitan; Marc K. Halushka; Kenneth W. Witwer
ABSTRACT In a recently published study, Anna Krichevsky and colleagues raise the important question of whether results of in vitro extracellular RNA (exRNA) studies, including extracellular vesicle (EV) investigations, are confounded by the presence of RNA in cell culture medium components such as foetal bovine serum (FBS). The answer, according to their data, is a resounding “yes”. Even after lengthy ultracentrifugation to remove bovine EVs from FBS, the majority of exRNA in FBS remained. Although technical factors may affect the degree of depletion, residual EVs and exRNA in FBS could influence the conclusions of in vitro studies: certainly, for secreted RNA, and possibly also for cell-associated RNA. In this commentary, we critically examine some of the literature in this field, including a recent study from some of the authors of this piece, in light of the Wei et al. study and explore how cell culture-derived RNAs may affect what we think we know about EV RNAs. These findings hold particular consequence as the field moves towards a deeper understanding of EV–RNA associations and potential functions.
Biosensors and Bioelectronics | 2009
Juan Pablo Tosar; Karen Keel; Justo Laíz
Two direct reagent-free detection methods were tested with Au/polypyrrole/oligonucleotide modified electrodes. Detection by monitoring guanine oxidation was realized amperometrically using an experimental setup which does not require any expensive electrochemical equipment and is therefore suitable for in situ detection. Target detection was also realized by monitoring the decrease in the amplitude of polypyrrole oxidation and reduction peaks in cyclic voltammetry experiments after incubation or injection of target into the electrochemical cell. Detection of 53 pM target within a 2000x excess of non-complementary sequences was possible. The possibility of a dual detection scheme in the same biosensor, with both detection schemes being totally independent from one another is very promising for genosensor design since it would result in a significant decrease in the number of false positive and false negative samples.
Biosensors and Bioelectronics | 2013
Juan Pablo Tosar; Joanne L. Holmes; Stuart D. Collyer; Frank Davis; Justo Laíz; Séamus P. J. Higson
Electrochemical DNA hybridization-based sensors show great promise as portable and automated analytical devices for routine screening of pathogenic or foreign nucleic acid sequences in biological samples. However, current sensor technologies still exhibit some unresolved issues which hampers their direct application into everyday life. Conducting polymers, such as polypyrrole (PPy), are increasingly being adopted as suitable platforms for DNA probe immobilization and signal transduction. Immobilization of DNA probes during pyrrole electropolymerization is a simple and efficient strategy to build composite electrodes suitable for DNA sensing. However, the effects of the probe state and sequence on PPy growth kinetics have not been studied yet. Here, we show that growth of PPy is drastically affected by the presence of guanine in the DNA probes and whether DNA is present in its single-stranded or double-stranded form. We show that some immobilization protocols may provoke irreversible oxidation of guanine moieties in the probe and that this issue deserves careful investigation as it may interfere with hybridization processes. We have also explored new procedures to build microelectrode arrays bearing immobilized DNA molecules, which are known to show beneficial properties in stirred samples. Overall, we present new techniques and concerns regarding the development of DNA-containing PPy-based composite electrodes, which may be taken into consideration for increasing genosensor reproducibility, response and performance.
Communications Biology | 2018
Juan Pablo Tosar; Carlos Rovira; Alfonso Cayota
PIWI-interacting RNAs (piRNAs) are regarded as the guardians of the genome because they tackle genome stability-threatening transposable elements in the germline. Recently, piRNAs were also reported in other types of cells, including mouse brain, malignant and non-malignant somatic tissues, and human plasma. This suggests that piRNA function might be broader than previously expected. Here, we show that different piRNA databases contain a subset of sequences that correspond to piRNA-sized fragments of ncRNAs (rRNAs, tRNAs, YRNAs, snRNAs, and snoRNAs) and intermediates of miRNA biogenesis. We discuss that the biogenesis of these sequences is probably independent of the PIWI pathway, and can therefore be considered contaminants in piRNA databases. Although a minority of annotated piRNAs falls in this category, they account for the vast majority of piRNA expression in somatic non-gonadal tissues. Since ncRNA fragments are ubiquitous and abundant, their confusion with piRNAs strongly impacts the estimation of piRNA expression outside of mammalian gonads.Juan Pablo Tosar et al. analyze existing databases to investigate whether piRNAs reportedly expressed outside the mammalian gonad are true piRNAs or likely contaminants. They conclude that the majority are fragments of non-coding RNAs from other small RNA classes rather than true piRNAs.
bioRxiv | 2018
Bastian Fromm; Juan Pablo Tosar; Lin Yu; Marc K. Halushka; Kenneth W. Witwer
microRNAs (miRNAs) are often highly conserved across species, but species-specific sequences are known. In addition, miRNA “isomiRs” arise from the same precursor molecule but differ in post-processing length and modification, usually at the 3’ end. A recently published feeding study reported the intriguing result that two bovine milk-specific miRNAs were taken up into human circulation after ingestion of bovine milk. Unfortunately, this interpretation is based on annotation errors in a public microRNA database. Reanalysis using databses including the MirGeneDB database reveals that the miRNAs in question, miR-21-5p and miR-30a-5p, arise from 100% identical 5’ precursor sequences in human and bovine, and the putative bovine-specific isomiRs appear to be depleted, not enriched, in bovine milk. Thus, enrichment of these isomiRs in human blood is inconsistent with uptake of xenomiRs and likely betrays endogenous miRNA regulation in response to diet or technical artifact.
Nucleic Acids Research | 2018
Juan Pablo Tosar; Fabiana Gámbaro; Leonardo Darré; Sergio Pantano; Eric Westhof; Alfonso Cayota
Abstract We have previously shown that 5′ halves from tRNAGlyGCC and tRNAGluCUC are the most enriched small RNAs in the extracellular space of human cell lines, and especially in the non-vesicular fraction. Extracellular RNAs are believed to require protection by either encapsulation in vesicles or ribonucleoprotein complex formation. However, deproteinization of non-vesicular tRNA halves does not affect their retention in size-exclusion chromatography. Thus, we considered alternative explanations for their extracellular stability. In-silico analysis of the sequence of these tRNA-derived fragments showed that tRNAGly 5′ halves can form homodimers or heterodimers with tRNAGlu 5′ halves. This capacity is virtually unique to glycine tRNAs. By analyzing synthetic oligonucleotides by size exclusion chromatography, we provide evidence that dimerization is possible in vitro. tRNA halves with single point substitutions preventing dimerization are degraded faster both in controlled nuclease digestion assays and after transfection in cells, showing that dimerization can stabilize tRNA halves against the action of cellular nucleases. Finally, we give evidence supporting dimerization of endogenous tRNAGlyGCC 5′ halves inside cells. Considering recent reports have shown that 5′ tRNA halves from Ala and Cys can form tetramers, our results highlight RNA intermolecular structures as a new layer of complexity in the biology of tRNA-derived fragments.