Juan Perucho
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Perucho.
Neurobiology of Disease | 2010
Jose Antonio Rodriguez-Navarro; Laura Rodríguez; María José Casarejos; Rosa M. Solano; Ana Gómez; Juan Perucho; Ana Maria Cuervo; Justo García de Yébenes; María Angeles Mena
Tauopathies are neurodegenerative diseases, sporadic or familial, mainly characterized by dementia and parkinsonism associated to atrophy of the frontotemporal cortex and the basal ganglia, with deposition of abnormal tau in brain. Hereditary tauopathies are related with mutations of the tau gene. Up to the present, these diseases have not been helped by any disease-modifying treatment, and patients die a few years after the onset of symptoms. We have developed and characterized a mouse model of tauopathy with parkinsonism, overexpressing human mutated tau protein with deletion of parkin (PK(-/-)/Tau(VLW)). At 3 months of age, these mice present abnormal dopamine-related behavior, severe dropout of dopamine neurons in the ventral midbrain, reduced dopamine levels in the striatum and abundant phosphorylated tau-positive neuritic plaques, neurofibrillary tangles, astrogliosis, and, at 12 months old, plaques of murine beta-amyloid in the hippocampus. Trehalose is a natural disaccharide that increases the removal of abnormal proteins through enhancement of autophagy. In this work, we tested if 1% trehalose in the drinking water reverts the PK(-/-)/Tau(VLW) phenotype. The treatment with trehalose of 3-month-old PK(-/-)/Tau(VLW) mice for 2.5 months reverted the dropout of dopamine neurons, which takes place in the ventral midbrain of vehicle treated PK(-/-)/Tau(VLW) and the reduced dopamine-related proteins levels in the midbrain and striatum. The number of phosphorylated tau-positive neuritic plaques and the levels of phosphorylated tau decreased, as well as astrogliosis in brain regions. The autophagy markers in the brain, the autophagic vacuoles isolated from the liver, and the electron microscopy data indicate that these effects of trehalose are mediated by autophagy. The treatment with trehalose for 4 months of 3-month-old PK(-/-)/Tau(VLW) mice maintained the amelioration of the tau pathology and astrogliosis but failed to revert DA-related pathology in the striatum. Furthermore, the 3-week treatment with trehalose of 14-month-old PK(-/-)/Tau(VLW) mice, at the limit of their life expectancy, improved the motor behavior and anxiety of these animals, and reduced their levels of phosphorylated tau and the number of murine beta-amyloid plaques. Trehalose is neuroprotective in this model of tauopathy. Since trehalose is free of toxic effects at high concentrations, this study opens the way for clinical studies of the effects of trehalose in human tauopathies.
Neurochemistry International | 2011
María José Casarejos; Rosa M. Solano; Ana Gómez; Juan Perucho; J.G. de Yébenes; M. A. Mena
Neurodegenerative diseases like Parkinsons disease, Alzheimers disease, Huntingtons disease and others are due to accumulation of abnormal proteins which fold improperly and impair neuronal function. Accumulation of these proteins could be achieved by several mechanisms including mutation, overproduction or impairment of its degradation. Inhibition of the normal protein degradation is produced by blockade of the ubiquitin proteasome system. We have shown that epoxomicin, a proteasome inhibitor, increases the levels of proteins involved in neurodegenerative disorders such as α-synuclein and hyper phosphorylated tau in NB69 human neuroblastoma cells and that such increase correlates with an enhanced rate of cell death. We then investigated whether the stimulation of autophagy, an alternative mechanism for elimination of abnormal proteins, by treatment with trehalose, counteracts the effects of proteasomal blockade. Trehalose, a disaccharide present in many non-mammalian species, known to enhance autophagy, protects cells against various environmental stresses. Treatment with trehalose produced a dose and time-dependent increase in the number of autophagosomes and markers of autophagy in NB69 cells. Trehalose did not change the number of total neither the number of dividing cells in the culture but it completely prevented the necrosis of NB69 induced by epoxomicin. In addition, the treatment with trehalose reverted the accumulation, induced by epoxomicin, of polyubiquitinated proteins, total and phosphorylated tau, p-GSK-3, and α-synuclein, as well as the α-synuclein intracellular aggregates. The effects of trehalose were not mediated through activation of free radical scavenging compounds, like GSH, or mitochondrial proteins, like DJ1, but trehalose reduced the activation of ERK and chaperone HSP-70 induced by epoxomicin. Inhibition of ERK phosphorylation prevented the epoxomicin-induced cell death. Inhibition of autophagy reverted the neuroprotective effects of trehalose in epoxomicin-induced cell death. These results suggest that trehalose is a powerful modifier of abnormal protein accumulation in neurodegenerative diseases.
Journal of Alzheimer's Disease | 2013
María José Casarejos; Juan Perucho; Ana Gómez; María Paz Muñoz; Marian Fernandez-Estévez; Onintza Sagredo; Javier Ruiz; Manuel Guzmán; Justo García de Yébenes; María Angeles Mena
Cannabinoids are neuroprotective in models of neurodegenerative dementias. Their effects are mostly mediated through CB1 and CB2 receptor-dependent modulation of excitotoxicity, inflammation, oxidative stress, and other processes. We tested the effects of Sativex®, a mixture of Δ9-tetrahydrocannabinol and cannabidiol, acting on both CB1 and CB2 receptors, in parkin-null, human tau overexpressing (PK-/-/TauVLW) mice, a model of complex frontotemporal dementia, parkinsonism, and lower motor neuron disease. The animals received Sativex®, 4.63 mg/kg, ip, daily, for one month, at six months of age, at the onset of the clinical symptoms. We evaluated the effects of Sativex® on behavior, dopamine neurotransmission, glial activation, redox state, mitochondrial activity, and deposition of abnormal proteins. PK-/-/TauVLW mice developed the neurological deficits, but those treated with Sativex® showed less abnormal behaviors related to stress, less auto and hetero-aggression, and less stereotypy. Sativex® significantly reduced the intraneuronal, MAO-related free radicals produced during dopamine metabolism in the limbic system. Sativex® also decreased gliosis in cortex and hippocampus, increased the ratio reduced/oxidized glutathione in the limbic system, reduced the levels of iNOS, and increased those of complex IV in the cerebral cortex. With regard to tau and amyloid pathology, Sativex® reduced the deposition of both in the hippocampus and cerebral cortex of PK-/-/TauVLW mice and increased autophagy. Sativex®, even after a short administration in animals with present behavioral and pathological abnormalities, improves the phenotype, the oxidative stress, and the deposition of proteins in PK-/-/TauVLW mice, a model of complex neurodegenerative disorders.
Current Alzheimer Research | 2012
Juan Perucho; María José Casarejos; Ana Gómez; Rosa M. Solano; Justo García de Yébenes; María Angeles Mena
There is an open controversy about the role of surgery and anesthesia in the pathogenesis of Alzheimer’s disease (AD). Clinical studies have shown a high prevalence of these procedures in subjects with AD but the interpretation of these studies is difficult because of the co-existence of multiple variables. Experimental studies in vitro and in vivo have shown that small molecular weight volatile anesthetics enhance amyloidogenesis in vitro and produce behavioral deficits and brain lesions similar to those found in patients with AD. We examined the effect of co-treatment with trehalose on isoflurane-induced amyloidogenesis in mice. WT and APPswe mice, of 11 months of age, were exposed to 1% isoflurane, 3 times, for 1.5 hours each time and sacrificed 24 hours after their last exposure to isoflurane. The right hemi-brain was used for histological analysis and the contra-lateral hemi-brain used for biochemical studies. In this study, we have shown that repetitive exposure to isoflurane in pre-symptomatic mature APPswe mice increases apoptosis in hippocampus and cerebral cortex, enhances astrogliosis and the expression of GFAP and that these effects are prevented by co-treatment with trehalose, a disaccharide with known effects as enhancer of autophagy. We have also confirmed that in our model the co-treatment with trehalose increases the expression of autophagic markers as well as the expression of chaperones. Cotreatment with trehalose reduces the levels of β amyloid peptide aggregates, tau plaques and levels of phospho-tau. Our study, therefore, provides new therapeutic avenues that could help to prevent the putative pro-amyloidogenic properties of small volatile anesthetics.
PLOS ONE | 2014
Maria Ángeles Fernández-Estevez; María José Casarejos; José Luis Lopez Sendón; Juan Garcia Caldentey; Carolina Ruiz; Ana Gómez; Juan Perucho; Justo García de Yébenes; María Angeles Mena
Huntingtons disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive and psychiatric deficits, associated with predominant loss of striatal neurons and is caused by polyglutamine expansion in the huntingtin protein. Mutant huntingtin protein and its fragments are resistant to protein degradation and produce a blockade of the ubiquitin proteasome system (UPS). In HD models, the proteasome inhibitor epoxomicin aggravates protein accumulation and the inductor of autophagy, trehalose, diminishes it. We have investigated the effects of epoxomicin and trehalose in skin fibroblasts of control and HD patients. Untreated HD fibroblasts have increased the levels of ubiquitinized proteins and higher levels of reactive oxygen species (ROS), huntingtin and the autophagy marker LAMP2A. Baseline replication rates were higher in HD than in controls fibroblasts but that was reverted after 12 passages. Epoxomicin increases the activated caspase-3, HSP70, huntingtin, ubiquitinated proteins and ROS levels in both HD and controls. Treatment with trehalose counteracts the increase in ROS, ubiquitinated proteins, huntingtin and activated caspase-3 levels induced by epoxomicin, and also increases the LC3 levels more in HD fibroblast than controls. These results suggest that trehalose could revert protein processing abnormalities in patients with Huntingtons Disease.
Human Molecular Genetics | 2008
J.A. Rodríguez-Navarro; Ana Gómez; Izaskun Rodal; Juan Perucho; Armando Martínez; Vicente Furió; Israel Ampuero; María José Casarejos; Rosa M. Solano; Justo García de Yébenes; María Angeles Mena
Deposition of proteins leading to amyloid takes place in some neurodegenerative diseases such as Alzheimers disease and Huntingtons disease. Mutations of tau and parkin proteins produce neurofibrillary abnormalities without deposition of amyloid. Here we report that mature, parkin null, over-expressing human mutated tau (PK(-/-)/Tau(VLW)) mice have altered behaviour and dopamine neurotransmission, tau pathology in brain and amyloid deposition in brain and peripheral organs. PK(-/-)/Tau(VLW) mice have abnormal behaviour and severe drop out of dopamine neurons in the ventral midbrain, up to 70%, at 12 months and abundant phosphorylated tau positive neuritic plaques, neuro-fibrillary tangles, astrogliosis, microgliosis and plaques of murine beta-amyloid in the hippocampus. PK(-/-)/Tau(VLW) mice have organomegaly of the liver, spleen and kidneys. The electron microscopy of the liver confirmed the presence of a fibrillary protein deposits with amyloid characteristics. There is also accumulation of mouse tau in hepatocytes. These mice have lower levels of CHIP-HSP70, involved in the proteosomal degradation of tau, increased oxidative stress, measured as depletion of glutathione which, added to lack of parkin, could trigger tau accumulation and amyloidogenesis. This model is the first that demonstrates beta-amyloid deposits caused by over-expression of tau and without modification of the amyloid precursor protein, presenilins or secretases. PK(-/-)/Tau(VLW) mice provide a link between the two proteins more important for the pathogenesis of Alzheimer disease.
Journal of Neurochemistry | 2009
María José Casarejos; Rosa M. Solano; J.A. Rodríguez-Navarro; Ana Gómez; Juan Perucho; José G. Castaño; Justo García de Yébenes; María Angeles Mena
Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals and abnormal neurotransmitter release. In this study, we have investigated whether partial proteasomal inhibition by epoxomicin, an ubiquitin proteasomal system (UPS) irreversible inhibitor, further aggravates the cellular effects of parkin suppression in midbrain neurons and glia. We observed that parkin null (PK‐KO) midbrain neuronal cultures are resistant to epoxomicin‐induced cell death. This resistance is due to increased GSH and DJ‐1 protein levels in PK‐KO mice. The treatment with epoxomicin increases, in wild type (WT) cultures, the pro‐apoptotic Bax/Bcl‐2 ratio, the phosphorylation of tau, and the levels of chaperones heat‐shock protein 70 and C‐terminal Hsc‐interacting protein, but none of these effects took place in epoxomicin‐treated PK‐KO cultures. Poly‐ubiquitinated proteins increased more in WT than in PK‐KO‐treated neuronal cultures. Parkin accumulated in WT neuronal cultures treated with epoxomicin. Markers of autophagy, such as LC3II/I, were increased in naïve PK‐KO cultures, and further increased after treatment with epoxomicin, implying that the blockade of the proteasome in PK‐KO neurons triggers the enhancement of autophagy. The treatment with l‐buthionine‐S,R‐sulfoximine and the inhibition of autophagy, however, reverted the increase resistance to epoxomicin of the PK‐KO cultures. We also found that PK‐KO glial cells, stressed by growth in defined medium and depleted of GSH, were more susceptible to epoxomicin induced cell death than WT glia treated similarly. This susceptibility was linked to reduced GSH levels and less heat‐shock protein 70 response, and to activation of p‐serine/threonine kinase protein signaling pathway as well as to increased poly‐ubiquitinated proteins. These data suggest that mild UPS inhibition is compensated by other mechanisms in PK‐KO midbrain neurons. However the depletion of GSH, as happens in stressed glia, suppresses the protection against UPS inhibition‐induced cell death. Furthermore, GSH inhibition regulated differentially UPS activity and in old PK‐KO mice, which have depletion of GSH, UPS activity is decreased in comparison with that of old‐WT.
Experimental Neurology | 2010
Juan Perucho; María José Casarejos; Isabel Rubio; Jose Antonio Rodriguez-Navarro; Ana Gómez; Israel Ampuero; Izaskun Rodal; Rosa M. Solano; Eva Carro; Justo García de Yébenes; María Angeles Mena
Parkin suppression induces accumulation of beta-amyloid in mutant tau mice. We studied the effect of parkin suppression on behaviour and brain pathology in APP(swe) mutant mice. We produced double mutant mice with human mutated APP(swe)+partial (hemizygote) or total (homozygote) deletion of Park-2 gene. We studied the development, behaviour, brain histology, and biochemistry of 12- and 16-month-old animals in 6 groups of mice, with identical genetic background: wild-type (WT), APP(swe) overexpressing (APP), hemizygote and homozygote deletion of Park-2 (PK(+/-) and PK(-/-), respectively), and double mutants (APP/PK(+/-) and APP/PK(-/-)). APP mice have reduced weight gain, decreased motor activity, and reduced number of entrances and of arm alternation in the Y-maze, abnormalities which were partially or completely normalized in APP/PK(+/-) and APP/PK(-/-) mice. The double mutants had similar number of mutant human APP transgene copies than the APP and levels of 40 and 80 kDa proteins; but both of them, APP/PK(+/-) and APP/PK(-/-) mice, had less plaques in cortex and hippocampus than the APP mice. APP mutant mice had increased apoptosis, proapoptotic Bax/Bcl2 ratios, and gliosis, but these death-promoting factors were normalized in APP/PK(+/-) and APP/PK(-/-) mice. APP mutant mice had an increased number of tau immunoreactive neuritic plaques in the cerebral cortex as well as increased levels of total and phosphorylated tau protein, and these changes were partially normalized in APP/PK(+/-) heterozygotic and homozygotic APP/PK(-/-) mice. Compensatory protein-degrading systems such as HSP70, CHIP, and macroautophagy were increased in APP/PK(+/-) and APP/PK(-/-). Furthermore, the chymotrypsin- and trypsin-like proteasome activities, decreased in APP mice in comparison with WT, were normalized in the APP/PK(-/-) mice. We proposed that partial and total suppression of parkin triggers compensatory mechanisms, such as chaperone overexpression and increased autophagy, which improved the behavioural and cellular phenotype of APP(swe) mice.
Brain Research | 2009
Isabel Rubio; J.A. Rodríguez-Navarro; Cristina Tomás-Zapico; Carolina Ruiz; María José Casarejos; Juan Perucho; Ana Gómez; Izaskun Rodal; José J. Lucas; María Angeles Mena; Justo García de Yébenes
Huntingtons disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines which makes huntingtin more resistant to degradation. Parkin is an ubiquitin ligase which promotes proteosomal degradation of abnormal proteins. We investigated whether partial suppression of parkin increases HD phenotype. We studied the behavior and brain histology and biochemistry of the mice produced by interbreeding of R6/1 (model of HD in mice) with Park-2(-/-) (parkin null mice): R6/1, WT (wild-type), PK(+/-) (hemizygotic deletion of Park-2) and R6/1/PK(+/-). R6/1 and R6/1/PK(+/-) mice had abnormal motor and exploratory behavior. R6/1/PK(+/-) mice were more akinetic. These two groups of mice had severe but similar loss of nigrostriatal dopamine neurons and monoamine levels in striatum. R6/1/PK(+/-) mice had fewer huntingtin inclusions and a greater number of TUNEL(+) cells than R6/1 in striatum but there were no differences in the hippocampus. DARPP-32 protein was equally reduced in striatum of R6/1 and R6/1/PK(+/-) mice. Striatal levels of GSH were increased, of HSP-70 reduced and of CHIP unchanged in both R6/1 and R6/1/PK(+/-) mice. LC-3 II/I ratios were significantly increased in striatum of R6/1/PK(+/-) mice. Partial suppression of parkin slightly aggravates the phenotype in R6/1 mice, confirming a pathogenic role of the UPS in the processing of mutant huntingtin. The absence of massive additional cellular lesions in R6/1/PK(+/-) mice suggests the existence of compensatory mechanisms, such as autophagy, for the processing of huntingtin.
PLOS ONE | 2014
María José Casarejos; Juan Perucho; José Luis López-Sendón; Justo García de Yébenes; Conceição Bettencourt; Ana Gómez; Carolina Ruiz; Peter Heutink; Patrizia Rizzu; María Angeles Mena
In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patients fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomicin and trehalose. The effects on cell death, protein misfolding and proteostasis were evaluated. Recent studies have revealed that mutations in STUB-1 gene lead to a growing list of molecular defects as deregulation of protein quality, inhibition of proteasome, cell death, decreased autophagy and alteration in CHIP and HSP70 levels. In this CHIP-mutant patient fibroblasts the inhibition of proteasome with epoxomicin induced severe pathophysiological age-associated changes, cell death and protein ubiquitination. Additionally, treatment with epoxomicin produced a dose-dependent increase in the number of cleaved caspase-3 positive cells. However, co-treatment with trehalose, a disaccharide of glucose present in a wide variety of organisms and known as a autophagy enhancer, reduced these pathological events. Trehalose application also increased CHIP and HSP70 expression and GSH free radical levels. Furthermore, trehalose augmented macro and chaperone mediated autophagy (CMA), rising the levels of LC3, LAMP2, CD63 and increasing the expression of Beclin-1 and Atg5-Atg12. Trehalose treatment in addition increased the percentage of immunoreactive cells to HSC70 and LAMP2 and reduced the autophagic substrate, p62. Although this is an individual case based on only one patient and the statistical comparisons are not valid between controls and patient, the low variability among controls and the obvious differences with this patient allow us to conclude that trehalose, through its autophagy activation capacity, anti-aggregation properties, anti-oxidative effects and lack of toxicity, could be very promising for the treatment of CHIP-mutation related ataxia, and possibly a wide spectrum of neurodegenerative disorders related to protein disconformation.