Juan R. Sanchez-Valencia
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan R. Sanchez-Valencia.
Nature | 2014
Juan R. Sanchez-Valencia; Thomas Dienel; Oliver Gröning; Ivan Shorubalko; Andreas Mueller; Martin Jansen; Konstantin Yu. Amsharov; Pascal Ruffieux; Roman Fasel
Over the past two decades, single-walled carbon nanotubes (SWCNTs) have received much attention because their extraordinary properties are promising for numerous applications. Many of these properties depend sensitively on SWCNT structure, which is characterized by the chiral index (n,m) that denotes the length and orientation of the circumferential vector in the hexagonal carbon lattice. Electronic properties are particularly strongly affected, with subtle structural changes switching tubes from metallic to semiconducting with various bandgaps. Monodisperse ‘single-chirality’ (that is, with a single (n,m) index) SWCNTs are thus needed to fully exploit their technological potential. Controlled synthesis through catalyst engineering, end-cap engineering or cloning strategies, and also tube sorting based on chromatography, density-gradient centrifugation, electrophoresis and other techniques, have delivered SWCNT samples with narrow distributions of tube diameter and a large fraction of a predetermined tube type. But an effective pathway to truly monodisperse SWCNTs remains elusive. The use of template molecules to unambiguously dictate the diameter and chirality of the resulting nanotube holds great promise in this regard, but has hitherto had only limited practical success. Here we show that this bottom-up strategy can produce targeted nanotubes: we convert molecular precursors into ultrashort singly capped (6,6) ‘armchair’ nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum (111) surface, and then elongate these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres. We expect that our on-surface synthesis approach will provide a route to nanotube-based materials with highly optimized properties for applications such as light detectors, photovoltaics, field-effect transistors and sensors.
Journal of Materials Chemistry | 2011
M. G. Manera; G. Montagna; Elías Ferreiro-Vila; Lola González-García; Juan R. Sanchez-Valencia; Agustín R. González-Elipe; Alfonso Cebollada; José Miguel García-Martín; Antonio García-Martín; G. Armelles; R. Rella
Porous TiO2 thin films deposited by glancing angle deposition are used as sensing layers to monitor their sensing capabilities towards Volatile Organic Compounds both in a standard Surface Plasmon Resonance (SPR) sensor and in Magneto-Optical Surface Plasmon Resonance (MO-SPR) configuration in order to compare their sensing performances. Here our results on the enhanced sensing capability of these TiO2 functionalized MO-SPR sensors with Au/Co/Au transducers with respect to traditional SPR gas sensors are presented.
ACS Applied Materials & Interfaces | 2010
Pedro Castillero; Juan R. Sanchez-Valencia; Manuel Cano; José M. Pedrosa; Javier Roales; Angel Barranco; Agustín R. González-Elipe
Fluorescent tetracationic porphyrin (TMPyP) molecules have been incorporated into optically transparent TiO(2) thin films acting as a host material. The films, with a columnar structure and open pores, were prepared by electron evaporation at glancing angles (GAPVD). The open porosity of the films has been estimated by measuring a water adsorption isotherm with a quartz crystal monitor. TMPyP molecules were infiltrated in the host thin films by their immersion into water solutions at controlled values of pH. The state of the adsorbed molecules, the infiltration efficiency, and the adsorption kinetics were assessed by analyzing the optical response of the films by UV-vis absorption and fluorescence techniques. The infiltration efficiency was directly correlated with the acidity of the medium, increasing at basic pHs as expected from simple considerations based on the concepts of the point of zero charge (PZC) developed for colloidal oxides. By a quantitative evaluation based on the analysis of the UV spectra, the infiltration process has been described by a Langmuir type adsorption isotherm and an Elovich-like kinetics. The accessibility of the infiltrated molecules in the TMPyP/TiO(2) composite films is assessed by following the changes of their optical properties when exposed to the acid vapors and their subsequent recovery with time.
Nanotechnology | 2012
Lola González-García; Julian Parra-Barranco; Juan R. Sanchez-Valencia; Angel Barranco; Ana Borras; Agustín R. González-Elipe; Mari-Cruz García-Gutiérrez; Jaime J. Hernández; Daniel R. Rueda; Tiberio A. Ezquerra
This paper reports a thorough microstructural characterization of glancing angle deposited (GLAD) TiO(2) thin films. Atomic force microscopy (afm), grazing-incidence small-angle x-ray scattering (GISAXS) and water adsorption isotherms have been used to determine the evolution of porosity and the existence of some correlation distances between the nanocolumns constituting the basic elements of the films nanostructure. It is found that the deposition angle and, to a lesser extent, the film thickness are the most important parameters controlling properties of the thin film. The importance of porosity and some critical dimensions encountered in the investigated GLAD thin films is highlighted in relation to the analysis of their optical properties when utilized as antireflective coatings or as hosts and templates for the development of new composite materials.
Journal of Materials Chemistry | 2012
Manuel Macias-Montero; Ana Borras; Zineb Saghi; Pablo Romero-Gomez; Juan R. Sanchez-Valencia; Juan Carlos Gil González; Angel Barranco; Paul A. Midgley; José Cotrino; Agustín R. González-Elipe
In this article we present a new type of 1D nanostructures consisting of supported hollow ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs). The 3D reconstruction by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) electron tomography reveals that the Ag NPs are distributed along the hollow interior of the ZnO NRs. Supported and vertically aligned Ag-NPs@ZnO-NRs grow at low temperature (135 °C) by plasma enhanced chemical vapour deposition on heterostructured substrates fabricated by sputtered deposition of silver on flat surfaces of Si wafers, quartz slides or ITO. The growth mechanisms of these structures and their wetting behavior before and after visible light irradiation are critically discussed. The as prepared surfaces are superhydrophobic with water contact angles higher than 150°. These surfaces turn into superhydrophilic with water contact angles lower than 10° after prolonged irradiation under both visible and UV light. The evolution rate of the wetting angle and its dependence on the light characteristics are related to the nanostructure and the presence of silver embedded within the ZnO NRs.
Langmuir | 2008
Juan R. Sanchez-Valencia; Ana Borras; Angel Barranco; Victor Rico; J.P. Espinós; Agustín R. González-Elipe
Illumination of TiO 2 thin films with UV light is known to induce the transformation of the surface of this material from partially hydrophobic into fully hydrophilic. The present work shows that this transformation is accompanied by other effects that may be used to control the synthesis of composite materials. For this purpose, TiO 2 and Ta 2O 5 transparent thin films with a columnar structure and open pores were prepared by electron evaporation at glancing angles. Transparent TiO 2 thin films with micropores (i.e., pores smaller than 2 nm) prepared by plasma enhanced chemical vapor deposition (PECVD) were also used. All these films became hydrophilic upon UV illumination. Rhodamine 6G and Rhodamine 800 dyes were irreversibly adsorbed within the columns of the TiO 2 and Ta 2O 5 thin films by immersion into a water solution of these molecules. Isolated and aggregated molecules of these two dyes were detected by visible absorption spectroscopy. The infiltration adsorption efficiency was directly correlated with the acidity of the medium, increasing at basic pHs as expected from simple considerations based on the concepts of the point of zero charge (PZC) in colloidal oxides. The infiltration experiments were repeated with columnar TiO 2 and Ta 2O 5 thin films that were subjected to preillumination with UV light. It was found that this treatment produced a modification in the type (isolated or aggregated) and amount of dye molecules incorporated into the pores. Moreover, the selective adsorption of a given dye in preilluminated areas of the films permitted the lithographic coloring of the films. Preillumination also controls the UV induced deposition of silver on the surface of the microporous TiO 2 thin films. It was found that the size distribution of the formed silver nanoparticles was dependent on the preillumination treatment and that a well-resolved surface plasmon resonance at around 500 nm was only monitored in the preilluminated films. A model is proposed to account for the effects induced by UV preillumination on the TiO 2 and Ta 2O 5 oxide surfaces. The possibilities of this type of light treatment for the tailored synthesis of nanocomposite thin films (i.e., dye-oxide, metal nanoparticles-oxide) are highlighted.
Advanced Materials | 2011
Juan R. Sanchez-Valencia; Johann Toudert; Ana Borras; Angel Barranco; Ruth Lahoz; Germán F. de la Fuente; F. Frutos; Agustín R. González-Elipe
Authors thank the Projects FUNCOAT CONSOLIDER-INGENIO CDS2008 – 0023, MAT2007 – 65764, MAT2010-18447, MAT2010-21228, CEN2007 – 2014, P09-TEP-5283, Domingo Martinez Foundation, and Juan de la Cierva Grant No JCI-2009 – 05098 for J.T.
Langmuir | 2009
Juan R. Sanchez-Valencia; Iwona Blaszczyk-Lezak; J.P. Espinós; Said Hamad; Agustín R. González-Elipe; Angel Barranco
Rhodamine 6G (Rh6G) dye molecules have been incorporated into transparent and porous SiO2 thin films prepared by evaporation at glancing angles. The porosity of these films has been assessed by analyzing their water adsorption isotherms measured for the films deposited on a quartz crystal monitor. Composite Rh6G/SiO2 thin films were prepared by immersion of a SiO2 thin film into a solution of the dye at a given pH. It is found that the amount of Rh6G molecules incorporated into the film is directly dependent on the pH of the solution and can be accounted for by a model based on the point of zero charge (PZC) concepts originally developed for colloidal oxides. At low pHs, the dye molecules incorporate in the form of monomers, while dimers or higher aggregates are formed if the pH increases. Depending on the actual preparation and treatment conditions, they also exhibit high relative fluorescence efficiency. The thermal stability of the composite films has been also investigated by characterizing their optical behavior after heating in an Ar atmosphere at increasing temperatures up to 275 degrees C. Heating induces a progressive loss of active dye molecules, a change in their agglomeration state, and an increment in their relative fluorescence efficiency. The obtained Rh6G/SiO2 composite thin films did not disperse the light and therefore can be used for integration into optical and photonic devices.
Langmuir | 2010
Ana Borras; P. Gröning; Juan R. Sanchez-Valencia; Angel Barranco; J.P. Espinós; Agustín R. González-Elipe
In this work, we report on a new type of superhydrophobic material consisting of supported organic nanowires prepared by vacuum deposition. Different intensely colored surfaces with water contact angles as high as 180 degrees can be fabricated depending on the composition, morphology, and density of the nanowires. These surfaces are stable in air and under intense light irradiation. The wettability properties of coatings made of metalloporphyrins and metallophthalocyanines nanowires as well as other heterostructured binary and open core@shell nanowires are studied.
Nanoscale | 2011
Maria Alcaire; Juan R. Sanchez-Valencia; Francisco J. Aparicio; Zineb Saghi; Juan C. Gonzalez-Gonzalez; Angel Barranco; Youssef Oulad Zian; Agustín R. González-Elipe; Paul A. Midgley; J.P. Espinós; Pierangelo Groening; Ana Borras
Hierarchical (branched) and hybrid metal-NPs/organic supported NWs are fabricated through controlled plasma processing of metalloporphyrin, metallophthalocyanine and perylene nanowires. The procedure is also applied for the development of a general template route for the synthesis of supported metal and metal oxide nanowires.