Juan Román Luque-Ortega
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Román Luque-Ortega.
Antimicrobial Agents and Chemotherapy | 2007
Juan Román Luque-Ortega; Luis Rivas
ABSTRACT Miltefosine (hexadecylphosphocholine [HePC]) is currently on trial as a first-choice, orally active drug for the treatment of visceral leishmaniasis when resistance to organic pentavalent antimonials becomes epidemic. However, data on the targets involved in its leishmanicidal mechanism have, until now, been only fragmentary. We have carried out a systematic study of the alterations induced on the bioenergetic metabolism of Leishmania donovani promastigotes by HePC. Overnight incubation with HePC caused a significant decline in the intracellular ATP levels of the parasites, together with a reduction in the oxygen consumption rate and mitochondrial depolarization, while the integrity of the plasma membrane remained undamaged. In a further step, the effects of HePC on the respiratory chain were addressed in digitonized parasites. The inhibition of the oxygen consumption rate caused by HePC was not reverted either with the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone or with tetramethyl-p-phenylenediamine plus ascorbate, which feeds the electron transport chain at the level of cytochrome c. These results suggest that cytochrome c oxidase is a likely target in the complex leishmanicidal mechanism of HePC. This was further confirmed from the finding that this enzyme was specifically inhibited in a dose-dependent manner by HePC, but not the cytochrome c reductase, ruling out an unspecific effect of HePC on the respiratory chain.
Antimicrobial Agents and Chemotherapy | 2010
Luis Carvalho; Juan Román Luque-Ortega; José Ignacio Manzano; Santiago Castanys; Luis Rivas; Francisco Gamarro
ABSTRACT Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca2+ levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process.
Antimicrobial Agents and Chemotherapy | 2011
Luis Carvalho; Juan Román Luque-Ortega; Carmen López-Martín; Santiago Castanys; Luis Rivas; Francisco Gamarro
ABSTRACT The 8-aminoquinoline analogue sitamaquine (SQ) is an oral antileishmanial drug currently undergoing phase 2b clinical trials for the treatment of visceral leishmaniasis. In the present study, we investigated the mechanism of action of this drug in Leishmania donovani promastigotes. SQ causes a dose-dependent inhibition of complex II (succinate dehydrogenase) of the respiratory chain in digitonin-permeabilized promastigotes, together with a drop in intracellular ATP levels and a decrease of the mitochondrial electrochemical potential. This is associated with increases of reactive oxygen species and intracellular Ca2+ levels, a higher percentage of the population with sub-G1 DNA content, and exposure of phosphatidylserine. Taken together, these results support a lethal mechanism for SQ that involves inhibition of the respiratory chain complex II, which in turn triggers oxidative stress and finally leads to an apoptosis-like death of Leishmania parasites.
Antimicrobial Agents and Chemotherapy | 2001
Juan Román Luque-Ortega; Octavio M. Rivero-Lezcano; Simon L. Croft; Luis Rivas
ABSTRACT A method for the rapid screening of drugs targeting the bioenergetic metabolism of Leishmania spp. was developed. The system is based on the monitoring of changes in the intracellular ATP levels of Leishmania donovani promastigotes that occur in vivo, as assessed by the luminescence produced by parasites transfected with a cytoplasmic form of Phothinus pyralisluciferase and incubated with free-membrane permeabled-luciferin analogued-luciferin–[1-(4,5-dimethoxy-2-nitrophenyl) ethyl ester]. A significant correlation was obtained between the rapid inhibition of luminescence with parasite proliferation and the dissipation of changes in mitochondrial membrane potential (ΔΨm) produced by buparvaquone or plumbagin, two leishmanicidal inhibitors of oxidative phosphorylation. To further validate this test, a screen of 14 standard leishmanicidal drugs, using a 50 μM cutoff, was carried out. Despite its semiquantitative properties and restriction to the promastigote stage, this test compares favorably with other bioenergetic parameters with respect to time and cell number requirements for the screening of drugs that affect mitochondrial activity.
Antimicrobial Agents and Chemotherapy | 2004
Juan Román Luque-Ortega; Silvia Martínez; José María Saugar; Laura R. Izquierdo; Teresa Abad; Javier G. Luis; José Piñero; Basilio Valladares; Luis Rivas
ABSTRACT Two antifungal phenyl-phenalenone phytoalexins isolated from the banana plant (Musa acuminata) elicited with the fungus Fusarium oxysporum, together with a methoxy derivative of one of them and two epoxide precursors of their chemical synthesis, were tested for leishmanicidal activity on Leishmania donovani promastigotes and L. infantum amastigotes. Drugs inhibited proliferation of both forms of the parasite with a 50% lethal concentration range between 10.3 and 68.7 μg/ml. Their lethal mechanism was found linked to the respiratory chain by a systematic approach, including electron microscopy, measurement of the oxygen consumption rate on digitonin-permeabilized promastigotes, and enzymatic assays on a mitochondrial enriched fraction. Whereas the whole set of compounds inhibited the activity of fumarate reductase in the mitochondrial fraction (50% effective concentration [EC50] between 33.3 and 78.8 μg/ml) and on purified enzyme (EC50 = 53.3 to 115 μg/ml), inhibition for succinate dehydrogenase was only observed for the two phytoalexins with the highest leishmanicidal activity: anigorufone and its natural analogue 2-methoxy-9-phenyl-phenalen-1-one (EC50 = 33.5 and 59.6 μg/ml, respectively). These results provided a new structural motif, phenyl-phenalenone, as a new lead for leishmanicidal activity, and support the use of plant extracts enriched in antifungal phytoalexins, synthesized under fungal challenge, as a more rational and effective strategy to screen for new plant leishmanicidal drugs.
Molecular Pharmaceutics | 2009
Luis J. Cruz; Juan Román Luque-Ortega; Luis Rivas; Fernando Albericio
Leishmaniasis is a human parasitic disease caused by infection by the protozoan Leishmania spp. Chemotherapy is currently the only treatment available, but its efficacy is increasingly challenged by the rising incidence of resistance and the frequent severe side effects associated with first-line drugs. Thus the development of leads with distinct mechanisms of action is urgently needed. A strategy often used for this purpose consists of assaying for leishmanicidal activity drugs formerly developed for other applications, such as amphotericin B (antifungal) or miltefosine (antitumor), among others, to profit from previous pharmacological and toxicological studies. Kahalalide F (KF) is a tumoricidal cyclic depsipeptide currently under phase II clinical trials for several types of cancer and psoriasis. Its mechanism of action has not been fully elucidated. Here we report the leishmanicidal activity of KF and its synthetic analogues at a micromolar range of concentrations. Its lethality is strongly linked to the alteration of the plasma membrane (PM) of the parasite based on (i) a rapid depolarization of the PM and uptake of the vital dye SYTOX Green upon its addition; (ii) evidence of severe morphological damage to the membrane of the parasite, as shown by transmission electron microscopy; and (iii) a rapid drop in the intracellular ATP levels, which correlates significantly with the leishmanicidal activity for active analogues, some of them with significant improvement of their therapeutic index with respect to the parental molecule. In addition to the basic knowledge obtained, this class of lethal mechanism is considerably less prone to the induction of resistance than classical drugs. All together, these observations foster further studies for the optimization of KF and its analogues as new anti-Leishmania leads with a new mode of action.
Journal of Medicinal Chemistry | 2007
José María Saugar; Javier Delgado; Valentín Hornillos; Juan Román Luque-Ortega; Francisco Amat-Guerri; A. Ulises Acuña; Luis Rivas
The leishmanicidal mechanism of miltefosine (hexadecylphosphocholine, MT) is not clearly understood. Valuable insights into its mode of action could be obtained by fluorescence techniques, given suitably emitting analogues. In this regard, the synthesis and biological characterization of two fully competent MT fluorescent analogues is reported here: all-(E)-13-phenyltrideca-6,8,10,12-tetraenylphosphocholine (PTE-MT) and all-(E)-13-phenyltrideca-8,10,12-trien-6-ynylphosphocholine (PTRI-MT). Both compounds show large absorption coefficients and a modest, but usable, fluorescence yield. Their activities were very similar to that of MT and were recognized by the MT uptake system of Leishmania. Their localization in living L. donovani promastigotes by confocal microscopy show a homogeneous intracellular distribution of the fluorescence. The concentration of PTRI-MT within the parasites (ca. 1.7 mM) showed a 100-fold enrichment relative to its external concentration. These results are consistent with a multiple target leishmanicidal mechanism for MT and validate the application of these analogues for pharmacokinetic and diagnostic studies concerning the chemotherapy of leishmaniasis.
Methods of Molecular Biology | 2010
Juan Román Luque-Ortega; Luis Rivas
This chapter describes the basic methodology to assay the activity of antimicrobial peptides (AMPs) on Leishmania, a human protozoan parasite. The protocols included can be methodologically divided into two major blocks. The first one addresses the basic technology for growth of the different stages of Leishmania, assessment of leishmanicidal activity, and monitoring of plasma membrane permeabilization. The second block encompasses the monitoring of bioenergetic parameters of the parasite, visualization of structural damage by transmission electron microscopy, or those methods more closely related to the involvement of intracellular AMP targets, as subcellular localization of the peptide and induction of parasite apoptosis.
Journal of Controlled Release | 2012
Juan Román Luque-Ortega; Beatriz G. de la Torre; Valentín Hornillos; Jean-Mathieu Bart; Cristina Rueda; Miguel Navarro; Francisco Amat-Guerri; A. Ulises Acuña; David Andreu; Luis Rivas
Miltefosine (hexadecylphosphocholine, HePC), the first orally active drug successful against leishmaniasis, is especially active on the visceral form of the disease. Resistance mechanisms are almost exclusively associated to dysfunction in HePC uptake systems. In order to evade the requirements of its cognate receptor/translocator, HePC-resistant Leishmania donovani parasites (R40 strain) were challenged with constructs consisting of an ω-thiol-functionalized HePC analogue conjugated to the cell-penetrating peptide (CPP) Tat(48-60), either through a disulfide or a thioether bond. The conjugates enter and kill both promastigote and intracellular amastigote forms of the R40 strain. Intracellular release of HePC by reduction of the disulfide-based conjugate was confirmed by means of double tagging at both the CPP (Quasar 670) and HePC (BODIPY) moieties. Scission of the conjugate, however, is not mandatory, as the metabolically more stable thioether conjugate retained substantial activity. The disulfide conjugate is highly active on the bloodstream form of Trypanosoma b. brucei, naturally resistant to HePC. Our results provide proof-of-mechanism for the use of CPP conjugates to avert drug resistance by faulty drug accumulation in parasites, as well as the possibility to extend chemotherapy into other parasites intrinsically devoid of membrane translocation systems.
Molecular Pharmaceutics | 2010
Juan Román Luque-Ortega; Luis J. Cruz; Fernando Albericio; Luis Rivas
IB-01212, an antitumoral cyclodepsipeptide isolated from the mycelium of the marine fungus Clonostachys sp., showed leishmanicidal activity at a low micromolar range of concentrations on promastigote and amastigote forms of the parasite. Despite its cationic and amphipathic character, shared with other membrane active antibiotic peptides, IB-01212 did not cause plasma membrane lesions large enough to allow the entrance of the vital dye SYTOX green (MW = 600), even at concentrations causing full lethality of the parasite. Having ruled out massive disruption of the plasma membrane, we surmised the involvement of intracellular targets. Proof of concept for this assumption was provided by the mitochondrial dysfunction caused by IB-01212, which finally caused the death of the parasite through an apoptotic-like process. The size of the cycle, the preservation of the C2 symmetry, and the nature of the bonds linking the two tetrapeptide halves participate in the modulation of the leishmanicidal activity exerted by this compound. Here we discuss the potential of IB-01212 as a lead for new generations of surrogates to be used in chemotherapy treatments against Leishmania .