Juan Solano
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Solano.
Journal of Spinal Cord Medicine | 2010
John W. Kuluz; Amer F. Samdani; David M. Benglis; Manuel Gonzalez-Brito; Juan Solano; Miguel A. Ramirez; Ali Luqman; Roosevelt De Los Santos; David Hutchinson; Mike Nares; Kyle R. Padgett; Dansha He; Tingting Huang; Allan D. Levi; Randal R. Betz; Dalton W. Dietrich
Abstract Objective: To develop a new, clinically relevant large animal model of pediatric spinal cord injury (SCI) and compare the clinical and experimental features of pediatric SCI. Methods: Infant piglets (3–5 weeks old) underwent contusive SCI by controlled cortical impactor at T7. Severe complete SCI was induced in 6 piglets, defined as SCI with no spontaneous return of sensorimotor function. Eight piglets received incomplete SCI, which was followed by partial recovery. Somatosensory evoked potentials, magnetic resonance imaging, neurobehavioral function, and histopathology were measured during a 28-day survival period. Results: Mean SCI volume (defined as volume of necrotic tissue) was larger after complete compared with incomplete SCI (387 ± 29 vs 77 ± 38 mm3, respectively, P < 0.001). No functional recovery occurred after complete SCI. After incomplete SCI, piglets initially had an absence of lower extremity sensorimotor function, urinary and stool retention, and little to no rectal tone. Sensory responses recovered first (1–2 days after injury), followed by spontaneous voiding, lower extremity motor responses, regular bowel movements, and repetitive flexion-extension of the lower extremities when crawling. No piglet recovered spontaneous walking, although 4 of 8 animals with incomplete injuries were able to bear weight by 28 days. In vivo magnetic resonance imaging was performed safely, yielded high-resolution images of tissue injury, and correlated closely with injury volume seen on histopathology, which included intramedullary hemorrhage, cellular inflammation, necrosis, and apoptosis. Conclusion: Piglets performed well as a reproducible model of traumatic pediatric SCI in a large animal with chronic survival and utilizing multiple outcome measures, including evoked potentials, magnetic resonance imaging, functional outcome scores, and histopathology.
BMC Medical Imaging | 2008
Anthony J. McGoron; Michael Capille; Michael Georgiou; Pablo Sanchez; Juan Solano; Manuel Gonzalez-Brito; John W. Kuluz
BackgroundAssessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets.MethodsThe focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM).ResultsA significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM.ConclusionThe suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.
Journal of Neurosurgery | 2008
David I. Sandberg; Kenneth M. Crandall; Carol K. Petito; Kyle R. Padgett; John T. Landrum; Darwin Babino; Danshe He; Juan Solano; Manuel Gonzalez-Brito; John W. Kuluz
OBJECT The authors hypothesized that chemotherapy infusions directly into the fourth ventricle may potentially play a role in treating malignant posterior fossa tumors. In this study the safety and pharmacokinetics of etoposide administration into the fourth ventricle was tested using an indwelling catheter in piglets. METHODS A closed-tip silicone lumbar drain catheter was inserted into the fourth ventricle via a posterior fossa craniectomy and 5 daily infusions of etoposide (0.5 mg in 5 animals) or normal saline (in 2 animals) were instilled. Piglets (10-18 kg, 2-3 months of age) underwent daily neurological examinations and 4.7-T magnetic resonance (MR) imaging after the final infusion and were then killed for postmortem examination. Pharmacokinetics were studied using reversed-phase high-performance liquid chromatography on cerebrospinal fluid (CSF) samples at 0.25, 1, 2, 4, 8, 12, and 24 hours after etoposide infusion. Peak and trough CSF etoposide levels were measured for each subsequent infusion. Serum etoposide levels were obtained at 2 and 4 hours after infusion. RESULTS All piglets remained neurologically intact, and MR images demonstrated catheter placement within the fourth ventricle without signal changes in the brainstem or cerebellum. Serum etoposide was absent at 2 and 4 hours after intraventricular infusions. When adequate samples could be obtained for analysis, CSF etoposide levels peaked 15 minutes after infusion and progressively decreased. Cytotoxic levels (> 0.1 microg/ml) were maintained for 5 consecutive peak and trough measurements with 1 exception. Etoposide-related neuropathology included moderate-to-severe T-lymphocytic meningitis and fourth and lateral ventricular choroid plexitis with associated subependymal inflammation. CONCLUSIONS Etoposide can be infused directly into the fourth ventricle without clinical or imaging evidence of damage. Cytotoxic CSF etoposide levels can be maintained for 24 hours with a single daily infusion into the fourth ventricle using an indwelling catheter. Intraventricular etoposide elicits an inflammatory response, the long-term effects of which are as yet undetermined.
Journal of Neurotrauma | 2017
Francisco D. Benavides; Andrea J. Santamaria; Nikita Bodoukhin; Luis Guada; Juan Solano; James D. Guest
Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.
Archive | 2018
Andrea J. Santamaria; Juan Solano; Francisco D. Benavides; James D. Guest
Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.
Journal of Neurotrauma | 2018
Andrea J. Santamaria; Francisco D. Benavides; Kyle R. Padgett; Luis Guada; Yohjan Nunez-Gomez; Juan Solano; James D. Guest
Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.
Journal of Neurotrauma | 2009
Tingting Huang; Juan Solano; Dansha He; Maher Loutfi; W. Dalton Dietrich; John W. Kuluz
Journal of Neuro-oncology | 2010
David I. Sandberg; Kenneth M. Crandall; Tulay Koru-Sengul; Kyle R. Padgett; John T. Landrum; Darwin Babino; Carol K. Petito; Juan Solano; Manuel Gonzalez-Brito; John W. Kuluz
Journal of Neuro-oncology | 2010
David I. Sandberg; Juan Solano; Carol K. Petito; Abdul M. Mian; Caihong Mou; Tulay Koru-Sengul; Manuel Gonzalez-Brito; Kyle R. Padgett; Ali Luqman; Juan Carlos Buitrago; Farid Alam; Jerome R. Wilkerson; Kenneth M. Crandall; John W. Kuluz
Neurocritical Care | 2010
Michael Zahra; Amer F. Samdani; Kurt Piggott; Manuel Gonzalez-Brito; Juan Solano; Roosevelt De Los Santo; Juan Carlos Buitrago; Farid Alam; Dansha He; John P. Gaughan; Randal R. Betz; Dalton W. Dietrich; John Kuluz