Juan Suárez
University of Málaga
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Suárez.
Diabetologia | 2008
Francisco Javier Bermúdez-Silva; Juan Suárez; Elena Baixeras; N. Cobo; Dolores Bautista; Antonio L. Cuesta-Muñoz; Esther Fuentes; Pablo Juan-Picó; M. J. Castro; G. Milman; R. Mechoulam; Angel Nadal; F Rodriguez de Fonseca
Aims/hypothesisWe examined the presence of functional cannabinoid receptors 1 and 2 (CB1, CB2) in isolated human islets, phenotyped the cells producing cannabinoid receptors and analysed the actions of selective cannabinoid receptor agonists on insulin, glucagon and somatostatin secretion in vitro. We also described the localisation on islet cells of: (1) the endocannabinoid-producing enzymes N-acyl-phosphatidyl ethanolamine-hydrolysing phospholipase D and diacylglycerol lipase; and (2) the endocannabinoid-degrading enzymes fatty acid amidohydrolase and monoacyl glycerol lipase.MethodsReal-time PCR, western blotting and immunocytochemistry were used to analyse the presence of endocannabinoid-related proteins and genes. Static secretion experiments were used to examine the effects of activating CB1 or CB2 on insulin, glucagon and somatostatin secretion and to measure changes in 2-arachidonoylglycerol (2-AG) levels within islets. Analyses were performed in isolated human islets and in paraffin-embedded sections of human pancreas.ResultsHuman islets of Langerhans expressed CB1 and CB2 (also known as CNR1 and CNR2) mRNA and CB1 and CB2 proteins, and also the machinery involved in synthesis and degradation of 2-AG (the most abundant endocannabinoid, levels of which were modulated by glucose). Immunofluorescence revealed that CB1 was densely located in glucagon-secreting alpha cells and less so in insulin-secreting beta cells. CB2 was densely present in somatostatin-secreting delta cells, but absent in alpha and beta cells. In vitro experiments revealed that CB1 stimulation enhanced insulin and glucagon secretion, while CB2 agonism lowered glucose-dependent insulin secretion, showing these cannabinoid receptors to be functional.Conclusions/interpretationTogether, these results suggest a role for endogenous endocannabinoid signalling in regulation of endocrine secretion in the human pancreas.
The Journal of Comparative Neurology | 2008
Juan Suárez; Francisco Javier Bermúdez-Silva; Ken Mackie; Catherine Ledent; Andreas Zimmer; Benjamin F. Cravatt; Fernando Rodríguez de Fonseca
We report a detailed analysis of the distribution of relevant proteins of the endogenous cannabinoid system in the rat cerebellum (cerebellar cortex and deep cerebellar nuclei) and the two functionally related nuclei, the vestibular nuclei and the inferior olive. These proteins include the two main cannabinoid receptors (CB1 and CB2), the enzymes involved in cannabinoid biosynthesis (DAGLα, DAGLβ, and NAPE‐PLD), and the endocannabinoid‐degradating enzymes (FAAH and MAGL). With regard to the cerebellar cortex, these data confirm several published reports on the distribution of cannabinoid CB1 receptors, DAGLα, MAGL, and FAAH, which suggests a role of endocannabinoids as retrograde messengers in the synapses of the Purkinje cells by either parallel fibers of granule cells or climbing fibers from the inferior olive or GABAergic interneuron. Additionally, we describe the presence of CB2 receptors in fibers related to Purkinje somata (Pinceau formations) and dendrites (parallel fibers), suggesting a potential role of this receptor in the retrograde cannabinoid signaling. A remarkable finding of the present study is the description of the different elements of the endogenous cannabinoid system in both the main afferent nuclei to the cerebellar cortex (the inferior olive) and the efferent cerebellar pathway (the deep cerebellar nuclei). The presence of the endogenous cannabinoid system at this level establishes the basis for endocannabinoid‐mediated synaptic plasticity as a control mechanism in motor learning, opening new research lines for the study of the contribution of this system in gait disorders affecting the cerebellum. J. Comp. Neurol. 509:400–421, 2008.
Hippocampus | 2009
Juan Suárez; Ricardo Llorente; Silvana Y. Romero-Zerbo; Beatriz Mateos; Francisco Javier Bermúdez-Silva; Fernando Rodríguez de Fonseca; Maria-Paz Viveros
Early maternal deprivation (MD) in rats (24 h, postnatal day 9–10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender‐dependent manner, and that these changes may account for the proposed schizophrenia‐like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB1 and CB2 receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13‐day‐old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB1 immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB2 immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB1 immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB2 immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.
Psychoneuroendocrinology | 2009
Maria-Paz Viveros; Ricardo Llorente; Meritxell López-Gallardo; Juan Suárez; Francisco Javier Bermúdez-Silva; M. De la Fuente; F. Rodríguez de Fonseca; Luis Miguel Garcia-Segura
We review here our latest results regarding short- and long-term effects of a neonatal maternal deprivation (MD) stress [24h at postnatal day (PND) 9] on diverse psychoneuroimmunoendocrine parameters, pointing out the existence of numerous sexual dimorphisms. Behavioral changes observed in MD animals might be at least in part attributable to neurodevelopmental effects of MD-induced elevated corticosterone levels. Our findings of short-term effects of MD on hippocampal and cerebellar neurons and glial cells appear to support this hypothesis. However, it is important to note that these cellular effects were more marked in males than in females. Moreover, in analyzing the effects of this neonatal stress on the endocannabinoid system (hippocampal endocannabinoid levels and CB1 receptors) we have also found that males were more affected by MD. Since all these sexual dimorphisms were found at an early neonatal age (PND 13), they are attributable to organizational effects of gonadal steroids. We discuss the potential implications of the elevated corticosterone and decreased leptin levels shown by MD animals in their diverse functional alterations, including the above mentioned neural effects as well as the intriguing persistent deficit in their immunological system. We also emphasize the necessity of analyzing the important influence of sex as regards the specific consequences of early life stress.
Journal of Endocrinology | 2011
Silvana Y. Romero-Zerbo; Alex Rafacho; Adenis Diaz-Arteaga; Juan Suárez; Ivan Quesada; Monica Imbernon; Ruth A. Ross; Carlos Dieguez; Fernando Rodríguez de Fonseca; Ruben Nogueiras; Angel Nadal; Francisco Javier Bermúdez-Silva
The cannabinoid CB1 receptor is a well-known player in energy homeostasis and its specific antagonism has been used in clinical practice for the treatment of obesity. The G protein-coupled receptor GPR55 has been recently proposed as a new cannabinoid receptor and, by contrast, its pharmacology is still enigmatic and its physiological role is largely unexplored, with no reports investigating its putative role in metabolism. Thus, we aim to investigate in rats the presence, distribution and putative physiological role of GPR55 in a key metabolic tissue, the endocrine pancreas. We found high Gpr55 mRNA content in pancreatic islets and considerable protein distribution in insulin-secreting β-cells. Activation of GPR55 by the agonist O-1602 increased calcium transients (P<0.01) and insulin secretion (P<0.001) stimulated by glucose. This latter effect was blunted in Gpr55 KO mice suggesting that O-1602 is acting, at least in part, through GPR55. Indeed, acute in vivo experiments showed that GPR55 activation increases glucose tolerance (P<0.05) and plasma insulin levels (P<0.05), suggesting an in vivo physiological relevance of GPR55 systemic stimulation. Taken together, these results reveal the expression of GPR55 receptors in the endocrine pancreas as well as its function at stimulus-secretion coupling of insulin secretion, suggesting a role in glucose homeostasis. In this context, it may also represent a new target for consideration in the management of type 2 diabetes and related diseases.
PLOS ONE | 2009
Lucía Márquez; Juan Suárez; Mar Iglesias; Francisco Javier Bermúdez-Silva; Fernando Rodríguez de Fonseca; Montserrat Andreu
Background Recent studies suggest potential roles of the endocannabinoid system in gastrointestinal inflammation. Although cannabinoid CB2 receptor expression is increased in inflammatory disorders, the presence and function of the remaining proteins of the endocannabinoid system in the colonic tissue is not well characterized. Methodology Cannabinoid CB1 and CB2 receptors, the enzymes for endocannabinoid biosynthesis DAGLα, DAGLβ and NAPE-PLD, and the endocannabinoid-degradating enzymes FAAH and MAGL were analysed in both acute untreated active ulcerative pancolitis and treated quiescent patients in comparison with healthy human colonic tissue by immunocytochemistry. Analyses were carried out according to clinical criteria, taking into account the severity at onset and treatment received. Principal Findings Western blot and immunocytochemistry indicated that the endocannabinoid system is present in the colonic tissue, but it shows a differential distribution in epithelium, lamina propria, smooth muscle and enteric plexi. Quantification of epithelial immunoreactivity showed an increase of CB2 receptor, DAGLα and MAGL expression, mainly in mild and moderate pancolitis patients. In contrast, NAPE-PLD expression decreased in moderate and severe pancolitis patients. During quiescent pancolitis, CB1, CB2 and DAGLα expression dropped, while NAPE-PLD expression rose, mainly in patients treated with 5-ASA or 5-ASA+corticosteroids. The number of immune cells containing MAGL and FAAH in the lamina propria increased in acute pancolitis patients, but dropped after treatment. Conclusions Endocannabinoids signaling pathway, through CB2 receptor, may reduce colitis-associated inflammation suggesting a potential drugable target for the treatment of inflammatory bowel diseases.
Journal of Psychopharmacology | 2012
Maria-Paz Viveros; Ricardo Llorente; Juan Suárez; A Llorente-Berzal; Meritxell López-Gallardo; F Rodriguez de Fonseca
This review focuses on the endocannabinoid system as a crucial player during critical periods of brain development, and how its disturbance either by early life stressful events or cannabis consumption may lead to important neuropsychiatric signs and symptoms. First we discuss the advantages and limitations of animal models within the framework of neuropsychiatric research and the crucial role of genetic and environmental factors for the establishment of vulnerable phenotypes. We are becoming aware of important sex differences that have emerged in relation to the psychobiology of cannabinoids. We will discuss sexual dimorphisms observed within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB1 receptors is regulated throughout development. Then, we discuss recent results showing how an experimental model of early maternal deprivation, which induces long-term neuropsychiatric symptoms, interacts in a sex-dependent manner with the brain endocannabinoid system during development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse. Finally, we discuss the potential implications that organizational and activational actions of gonadal steroids may have in establishing and maintaining sex dependence in the neurobiological actions of cannabinoids and their interaction with stress.
British Journal of Pharmacology | 2011
Ana Crespillo; Mónica Alonso; Margarita Vida; Pavon Fj; Antonia Serrano; Patricia Rivera; Yanina Romero-Zerbo; P. Fernández-Llebrez; Ana Martinez; Vidal Perez-Valero; Francisco Javier Bermúdez-Silva; Juan Suárez; Fr de Fonseca
BACKGROUND AND PURPOSE The lack of safe and effective treatments for obesity has increased interest in natural products that may serve as alternative therapies. From this perspective, we have analysed the effects of daidzein, one of the main soy isoflavones, on diet‐induced obesity in rats.
The Journal of Comparative Neurology | 2006
Juan Suárez; José Carlos Dávila; M. Ángeles Real; Salvador Guirado; Loreta Medina
To better understand the formation and adult organization of the avian pallium, we studied the expression patterns of gamma‐aminobutyric acid (GABA), calbindin (CB), calretinin (CR), and neuronal nitric oxide synthase (nNOS) in the hippocampal formation and hyperpallium of developing and adult chicks. Each marker showed a specific spatiotemporal expression pattern and was expressed in a region (area)‐specific but dynamic manner during development. The combinatorial expression of these markers was very useful for identifying and following the development of subdivisions of the chicken hippocampal formation and hyperpallium. In the hyperpallium, three separate radially arranged subdivisions were present since early development showing distinct expression patterns: the apical hyperpallium (CB‐rich); the intercalated hyperpallium (nNOS‐rich, CB‐poor); the dorsal hyperpallium (nNOS‐poor, CB‐moderate). Furthermore, a novel division was identified (CB‐rich, CR‐rich), interposed between hyper‐ and mesopallium and related to the lamina separating both, termed laminar pallial nucleus. This gave rise at its surface to part of the lateral hyperpallium. Later in development, the interstitial nucleus of the apical hyperpallium became visible as a partition of the apical hyperpallium. In the hippocampal formation, at least five radial divisions were observed, and these were compared with the divisions proposed recently in adult pigeons. Of note, the corticoid dorsolateral area (sometimes referred as caudolateral part of the parahippocampal area) contained CB immunoreactivity patches coinciding with Nissl‐stained cell aggregates, partially resembling the patches described in the mammalian entorhinal cortex. Each neurochemical marker was present in specific neuronal subpopulations and axonal networks, providing insights into the functional maturation of the chicken pallium. J. Comp. Neurol. 497:751–771, 2006.
British Journal of Pharmacology | 2012
Mónica Alonso; Antonia Serrano; Margarita Vida; Ana Crespillo; Laura Hernandez-Folgado; Nadine Jagerovic; Pilar Goya; Carmen Reyes-Cabello; Vidal Perez-Valero; Juan Decara; Manuel Macías-González; Francisco Javier Bermúdez-Silva; Juan Suárez; Fernando Rodríguez de Fonseca; Francisco Javier Pavón
BACKGROUND AND PURPOSE Peripheral blockade of cannabinoid CB1 receptors has been proposed as a safe and effective therapy against obesity, putatively devoid of the adverse psychiatric side effects of centrally acting CB1 receptor antagonists. In this study we analysed the effects of LH‐21, a peripherally acting neutral cannabinoid receptor antagonist with poor brain penetration, in an animal model of diet‐induced obesity.