Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where JuanJuan Yin is active.

Publication


Featured researches published by JuanJuan Yin.


Oncogene | 2013

MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms.

Yen Nien Liu; JuanJuan Yin; Wassim Abou-Kheir; Paul G. Hynes; Orla Casey; Lei Fang; Ming Yi; Robert M. Stephens; Victoria Seng; Heather Sheppard-Tillman; Philip Martin; Kathleen Kelly

Epithelial–mesenchymal transition (EMT) is a developmental program of signaling pathways that determine commitment to epithelial and mesenchymal phenotypes. In the prostate, EMT processes have been implicated in benign prostatic hyperplasia and prostate cancer progression. In a model of Pten- and TP53-null prostate adenocarcinoma that progresses via transforming growth factor β-induced EMT, mesenchymal transformation is characterized by plasticity, leading to various mesenchymal lineages and the production of bone. Here we show that SLUG is a major regulator of mesenchymal differentiation. As microRNAs (miRs) are pleiotropic regulators of differentiation and tumorigenesis, we evaluated miR expression associated with tumorigenesis and EMT. Mir-1 and miR-200 were reduced with progression of prostate adenocarcinoma, and we identify Slug as one of the phylogenetically conserved targets of these miRs. We demonstrate that SLUG is a direct repressor of miR-1 and miR-200 transcription. Thus, SLUG and miR-1/miR-200 act in a self-reinforcing regulatory loop, leading to amplification of EMT. Depletion of Slug inhibited EMT during tumorigenesis, whereas forced expression of miR-1 or miR-200 inhibited both EMT and tumorigenesis in human and mouse model systems. Various miR targets were analyzed, and our findings suggest that miR-1 has roles in regulating EMT and mesenchymal differentiation through Slug and functions in tumor-suppressive programs by regulating additional targets.


Molecular and Cellular Biology | 2007

Activation of the RalGEF/Ral Pathway Promotes Prostate Cancer Metastasis to Bone

JuanJuan Yin; Claire Pollock; Kirsten Tracy; Monika Chock; Philip Martin; Michael Oberst; Kathleen Kelly

ABSTRACT A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.


Cancer Research | 2010

Cediranib/AZD2171 Inhibits Bone and Brain Metastasis in a Preclinical Model of Advanced Prostate Cancer

JuanJuan Yin; Luhua Zhang; Munasinghe J; Linnoila Ri; Kathleen Kelly

Late stage or aggressive cancers exhibit metastatic growth at multiple sites, and the characterization of treatment response in various organs to drugs with potentially wide-ranging efficacy is needed. Tumor cells that induce angiogenesis are a common characteristic of metastatic disease, and clinically, antiangiogenic therapies have shown value in the setting of advanced cancer. However, recent preclinical studies have suggested that exposure to antiangiogenic drugs can increase tumor invasiveness and metastasis, making it important to determine which contexts antiangiogenic therapy is most appropriate. We describe here the effects of cediranib, a receptor tyrosine kinase inhibitor, in a model of advanced prostate cancer metastatic to skeleton and brain. Treatment with cediranib decreased metastatic tumor burden in the brain and bone, decreased cerebral vasogenic edema, and improved survival, despite increasing the invasive histology of brain metastases. Short-duration cediranib treatment given at the time of tumor cell dissemination was sufficient to inhibit the establishment and subsequent growth of bone metastases, although brain metastases were subject to rebound growth after the discontinuation of cediranib. Distinct growth patterns at different organ sites in the same animal showed that certain tumor microenvironments such as bone may be most amenable to interventions by anti-vascular endothelial growth factor (VEGF) therapies. In addition, anti-VEGF treatment may be of utility in decreasing the rapid growth of solid brain metastases and vasogenic edema in patients with advanced cancer, leading to reduced morbidity and associated clinical benefit.


Oncogene | 2015

Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway

Man Kit Siu; Yuan Chin Tsai; Yung Sheng Chang; JuanJuan Yin; Florent Suau; Wei Yu Chen; Yawei Liu

Transforming growth factor-β (TGFβ) is enriched in the bone matrix and serves as a key factor in promoting bone metastasis in cancer. In addition, TGFβ signaling activates mammalian target of rapamycin (mTOR) functions, which is important for the malignant progression. Here, we demonstrate that TGFβ regulates the level of microRNA-96 (miR-96) through Smad-dependent transcription and that miR-96 promotes the bone metastasis in prostate cancer. The enhanced effects in cellular growth and invasiveness suggest that miR-96 functions as an oncomir/and metastamir. Supporting this idea, we identified a downstream target of the TGFβ-miR-96 signaling pathway to be AKT1S1 mRNA, whose translated protein is a negative regulator of mTOR kinase. Our findings provide a novel mechanism accounting for the TGFβ signaling and bone metastasis.


Molecular and Cellular Biology | 2015

Loss of Androgen-Regulated MicroRNA 1 Activates SRC and Promotes Prostate Cancer Bone Metastasis

Yen Nien Liu; JuanJuan Yin; Ben Barrett; Heather Sheppard-Tillman; Dongmei Li; Orla Casey; Lei Fang; Paul G. Hynes; Amir H. Ameri; Kathleen Kelly

ABSTRACT Bone metastasis is the hallmark of progressive and castration-resistant prostate cancers. MicroRNA 1 (miR-1) levels are decreased in clinical samples of primary prostate cancer and further reduced in metastases. SRC has been implicated as a critical factor in bone metastasis, and here we show that SRC is a direct target of miR-1. In prostate cancer patient samples, miR-1 levels are inversely correlated with SRC expression and a SRC-dependent gene signature. Ectopic miR-1 expression inhibited extracellular signal-regulated kinase (ERK) signaling and bone metastasis in a xenograft model. In contrast, SRC overexpression was sufficient to reconstitute bone metastasis and ERK signaling in cells expressing high levels of miR-1. Androgen receptor (AR) activity, defined by an AR output signature, is low in a portion of castration-resistant prostate cancer. We show that AR binds to the miR-1-2 regulatory region and regulates miR-1 transcription. Patients with low miR-1 levels displayed correlated low canonical AR gene signatures. Our data support the existence of an AR–miR-1–SRC regulatory network. We propose that loss of miR-1 is one mechanistic link between low canonical AR output and SRC-promoted metastatic phenotypes.


Oncogene | 2017

Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53 -deficient prostate cancer

Philip Martin; JuanJuan Yin; Victoria Seng; Orla Casey; E. Corey; C. Morrissey; R. M. Simpson; Kathleen Kelly

Prostate cancer is characterized by a dependence upon androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) is the accepted treatment for progressive prostate cancer. Although ADT is usually initially effective, acquired resistance termed castrate-resistant prostate cancer (CRPC) develops. PTEN and TP53 are two of the most commonly deleted or mutated genes in prostate cancer, the compound loss of which is enriched in CRPC. To interrogate the metabolic alterations associated with survival following ADT, we used an orthotopic model of Pten/Tp53 null prostate cancer. Metabolite profiles and associated regulators were compared in tumors from androgen-intact mice and in tumors surviving castration. AR inhibition led to changes in the levels of glycolysis and tricarboxylic acid (TCA) cycle pathway intermediates. As anticipated for inhibitory reciprocal feedback between AR and PI3K/AKT signaling pathways, pAKT levels were increased in androgen-deprived tumors. Elevated mitochondrial hexokinase 2 (HK2) levels and enzyme activities also were observed in androgen-deprived tumors, consistent with pAKT-dependent HK2 protein induction and mitochondrial association. Competitive inhibition of HK2-mitochondrial binding in prostate cancer cells led to decreased viability. These data argue for AKT-associated HK2-mediated metabolic reprogramming and mitochondrial association in PI3K-driven prostate cancer as one survival mechanism downstream of AR inhibition.


Oncogene | 2017

Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis

Wei Yu Chen; Yuan Chin Tsai; Man Kit Siu; Hsiu-Lien Yeh; Chi Long Chen; JuanJuan Yin; Jiaoti Huang; Yawei Liu

Current therapeutic regimens for prostate cancer focus on targeting androgen receptor (AR) signaling. However, the AR is a key factor in luminal epithelium differentiation and was shown to have a role as a tumor suppressor. Thus, its inhibition may activate oncogenic pathways that contribute to metastatic castration-resistant prostate cancer (CRPC). Herein, we report a novel tumor promoter, ZBTB46, which is negatively regulated by AR signaling via microRNA (miR)-1-mediated downregulation. ZBTB46 is associated with malignant prostate cancer and is essential for metastasis. Its overexpression can overcome the antitumor effects of miR-1 and promote androgen-independent proliferation. We demonstrated that ZBTB46 can transcriptionally regulate SNAI1, a key epithelial-to-mesenchymal transition (EMT) driver, which could contribute to induction of the EMT after androgen-deprivation therapy and metastasis. Our findings are supportive of the model that disruption of AR’s function may predispose prostate cancer to progress to metastatic CRPC.


Oncotarget | 2017

Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer

Hong Pan; Keith H. Jansson; Michael L. Beshiri; JuanJuan Yin; Lei Fang; Supreet Agarwal; Holly M. Nguyen; Eva Corey; Ying Zhang; Jie Liu; Huiting Fan; Hongsheng Lin; Kathleen A. Kelly

Advanced prostate cancer (PrCa) is treated with androgen deprivation therapy, and although there is usually a significant initial response, recurrence arises as castrate resistant prostate cancer (CRPC). New approaches are needed to treat this genetically heterogeneous, phenotypically plastic disease. CRPC with combined homozygous alterations to PTEN and TP53 comprise about 30% of clinical samples. We screened eleven traditional Chinese medicines against a panel of androgen-independent Pten/Tp53 null PrCa-derived cell lines and identified gambogic acid (GA) as a highly potent growth inhibitor. Mechanistic analyses revealed that GA disrupted cellular redox homeostasis, observed as elevated reactive oxygen species (ROS), leading to apoptotic and ferroptotic death. Consistent with this, we determined that GA inhibited thioredoxin, a necessary component of cellular anti-oxidative, protein-reducing activity. In other clinically relevant models, GA displayed submicromolar, growth inhibitory activity against a number of genomically-representative, CRPC patient derived xenograft organoid cultures. Inhibition of ROS with N-acetyl-cysteine partially reversed growth inhibition in CRPC organoids, demonstrating ROS imbalance and implying that GA may have additional mechanisms of action. These data suggest that redox imbalances initiated by GA may be useful, especially in combination therapies, for treating the heterogeneity and plasticity that contributes to the therapeutic resistance of CRPC.


Clinical Cancer Research | 2018

A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening

Michael L. Beshiri; Caitlin M. Tice; Crystal Tran; Holly M. Nguyen; Adam G. Sowalsky; Supreet Agarwal; Keith H. Jansson; Qi Yang; Kerry McGowen; JuanJuan Yin; Aian Neil Alilin; Fatima Karzai; William L. Dahut; Eva Corey; Kathleen Kelly

Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis. Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin. Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2−/− organoids, similar to responses observed in patients. Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332–45. ©2018 AACR.


Cancer Research | 2018

Abstract B018: A high-throughput screen identifies HSP90 inhibitors as potent therapeutics across multiple clinically representative organoid models of advanced prostate cancer

Keith H. Jansson; John Tucker; Lauren Stahl; John K. Simmons; Caitlyn Fuller; Michael L. Beshiri; Supreet Agarwal; Yasmine Abbey; Lei Fang; Paul G. Hynes; Alilin Aian Neil; Jacob Cawley; Ross Lake; Crystal Tran; Caitlin M. Tice; JuanJuan Yin; Xiahu Zhang; Rajarshi Guha; Shelley Hoover; R. Mark Simpson; Holly M. Nguyen; Eva Corey; Craig J. Thomas; David A. Proia; Kathleen A. Kelly

Androgen-deprivation therapy (ADT) remains the gold-standard therapy for prostate cancer (PrCa), and although ADT is initially effective, most men progress to castrate-resistant prostate cancer (CRPC) within 2-3 years. Advanced CRPC is challenging to treat because intrinsic tumor heterogeneity and phenotypic plasticity engender short-lived responses and underlie resistance to conventional therapies. Combined PTEN/TP53 alterations represent a major genotype of advanced CRPC (25-30%) and are associated with poor clinical outcomes. Established PrCa cell lines do not accurately represent the heterogeneity of advanced CRPC, and therefore, nonbiased pharmacogenomics screens have not been done. The development of clinically representative, tractable models suitable for high-throughput target identification and validation is crucial for advancing novel CRPC therapies to the clinic. A comprehensive nonbiased high-throughput screen performed on seven cell lines derived from a genetically engineered mouse model (GEMM) of Pten/Tp53 null PrCa identified strongly active compounds, including inhibitors of PI3K/AKT/mTOR signaling, the proteasome, cell cycle regulatory proteins, heat shock proteins, DNA repair signaling, NFKB signaling, MAPK signaling, and several types of epigenetic modifiers. HSP90 inhibitors were one of the most efficacious classes of compounds in the screen, and ganetespib, a clinically used second-generation HSP90 inhibitor with a favorable safety profile, was the most potent. Although HSP90 inhibitors have yet to be successful as single agents, they have not been thoroughly investigated in clinically representative models of advanced PrCa and have shown potential as “network drugs,” prompting our investigations into their utility in polytherapy. We first validated ganetespib as a single agent, where it displayed strong activity against several GEMM-derived and LuCaP PDX-derived organoid models encompassing genotypic, phenotypic, and lineage heterogeneity. These 10 novel LuCaP PDX-derived organoids are representative of the numerous categories of CRPC, including adenocarcinomas with wild-type AR, adenocarcinomas with altered AR, adenocarcinoma with neuroendocrine features, and neuroendocrine disease. Single-agent ganetespib was also strongly inhibitory in vivo, decreasing growth of Pten/Tp53 null endogenous GEMM tumors as well as a human PDX tumor. Mechanistic interrogation of cell lines, organoids, and tumors exposed to ganetespib revealed inhibition of targets from several inter-related networks including AR and pAKT, two central and mutually compensatory growth and survival pathways for PrCa. The efficacy of ganetespib against a diverse group of CRPC organoids and the simultaneous inhibition of PrCa survival signaling suggested it may work well in combination. We performed a proof-of-principle high-throughput matrix screen on organoids derived from a Pten/Tp53 null GEMM and identified docetaxel and etoposide to be synergistic when combined with ganetespib. Preclinical in vivo studies to validate these findings are ongoing. In all, comprehensive data from multiple near-patient models suggest novel contexts for second-generation HSP90-directed intervention against a variety of CRPC genotypes and phenotypes and expand upon the potential of HSP90 inhibitors to simultaneously inhibit oncogenic signaling and compensatory resistance mechanisms. Citation Format: Keith H. Jansson, John B. Tucker, Lauren E. Stahl, John K. Simmons, Caitlyn Fuller, Michael L. Beshiri, Supreet Agarwal, Yasmine Abbey, Lei Fang, Paul G. Hynes, Alilin Aian Neil, Jacob Cawley, Ross Lake, Crystal Tran, Caitlin M. Tice, JuanJuan Yin, Xiahu Zhang, Rajarshi Guha, Shelley Hoover, R. Mark Simpson, Holly Nguyen, Eva Corey, Craig J. Thomas, David Proia, Kathleen Kelly. A high-throughput screen identifies HSP90 inhibitors as potent therapeutics across multiple clinically representative organoid models of advanced prostate cancer [abstract]. In: Proceedings of the AACR Special Conference: Prostate Cancer: Advances in Basic, Translational, and Clinical Research; 2017 Dec 2-5; Orlando, Florida. Philadelphia (PA): AACR; Cancer Res 2018;78(16 Suppl):Abstract nr B018.

Collaboration


Dive into the JuanJuan Yin's collaboration.

Top Co-Authors

Avatar

Lei Fang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathleen Kelly

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul G. Hynes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Orla Casey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eva Corey

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man Kit Siu

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge