Juciano Gasparotto
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juciano Gasparotto.
Food and Chemical Toxicology | 2013
Maurilio da Silva Morrone; Adriano Martimbianco de Assis; Ricardo Fagundes da Rocha; Juciano Gasparotto; Andressa Córneo Gazola; Geison M. Costa; Silvana Maria Zucolotto; Leonardo Castellanos; Freddy A. Ramos; Eloir Paulo Schenkel; Flávio Henrique Reginatto; Daniel Pens Gelain; José Cláudio Fonseca Moreira
The leaf extracts of many species of genus Passiflora have been extensively investigated for their biological activities on several rat tissues, but mainly in the central nervous system and liver. They posses anxiolytic-like, sedative effects and antioxidant properties. Evidences suggest a key role of C-glycosylflavonoids in the biological activities of Passiflora extracts. Some species (such as P. manicata) of the genus are still poorly investigated for their chemical and biological activity. In this work, we aim to investigate both antioxidant and antiglycation properties of aqueous extract of P. manicata leaves (PMLE) in vitro and ex vivo models. Crude extract showed the C-glycosylflavonoid isovitexin as the major compound. Isoorientin and vitexin were also identified. In TRAP/TAR assay, PMLE showed a significant antioxidant activity. PMLE at concentrations of 10 and 100 μg mL⁻¹ significantly decreasing LDH leakage in rat liver slices. Antioxidant effect also was observed by decreased in oxidative damage markers in slices hence hydrogen peroxide was added as oxidative stress inductor. PMLE inhibited protein glycation at all concentrations tested. In summary, P. manicata aqueous leaf extract possess protective properties against reactive oxygen species and also protein glycation, and could be considered a new source of natural antioxidants.
Cellular Signalling | 2013
Matheus Augusto de Bittencourt Pasquali; Daniel Pens Gelain; Fares Zeidán-Chuliá; André Simões Pires; Juciano Gasparotto; Silvia Resende Terra; José Cláudio Fonseca Moreira
As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by retinol is mediated by the redox-dependent activation of p38/NF-kB signaling pathway.
International Journal for Parasitology | 2013
Ramatis Birnfeld de Oliveira; Mario Roberto Senger; Laura Milán Vasques; Juciano Gasparotto; João Paulo Almeida dos Santos; Matheus Augusto de Bittencourt Pasquali; José Cláudio Fonseca Moreira; Floriano P. Silva; Daniel Pens Gelain
Schistosomiasis is a parasitic disease caused by trematode worms from the Schistosoma genus and is characterized by high rates of morbidity. The main organs affected in this pathology, such as liver, kidneys and spleen, are shifted to a pro-oxidant state in the course of the infection. Here, we compared oxidative stress parameters of liver, kidney and spleen with other organs affected by schistosomiasis - heart, brain cortex and lungs. The results demonstrated that mice infected with Schistosoma mansoni had altered non-enzymatic antioxidant status in lungs and brain, increased carbonyl levels in lungs, and a moderate level of oxidative stress in heart. A severe redox imbalance in liver and kidneys and decreased non-enzymatic antioxidant capacity in spleen were also observed. Superoxide dismutase and catalase activities were differently modulated in liver, kidney and heart, and we found that differences in Superoxide dismutase 2 and catalase protein content may be responsible for these differences. Lungs had decreased receptor for advanced glycation endproduct expression and the brain cortex presented altered tau expression and phosphorylation levels, suggesting important molecular changes in these tissues, as homeostasis of these proteins is widely associated with the normal function of their respective organs. We believe that these results demonstrate for the first time that changes in the redox profile and expression of tissue-specific proteins of organs such as heart, lungs and brain are observed in early stages of S. mansoni infection.
Biochimica et Biophysica Acta | 2014
Mateus Grings; Alana Pimentel Moura; Alexandre Umpierrez Amaral; Belisa Parmeggiani; Juciano Gasparotto; José Cláudio Fonseca Moreira; Daniel Pens Gelain; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz
Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.
Biochimica et Biophysica Acta | 2014
Anelise Miotti Tonin; Alexandre Umpierrez Amaral; Estela Natacha Brandt Busanello; Juciano Gasparotto; Daniel Pens Gelain; Niels Gregersen; Moacir Wajner
Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.
Science of The Total Environment | 2013
Juciano Gasparotto; Nauana Somensi; Fernanda Freitas Caregnato; Thallita Kelly Rabelo; Kátia DaBoit; Marcos L.S. Oliveira; José Cláudio Fonseca Moreira; Daniel Pens Gelain
Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death.
Journal of Nutritional Biochemistry | 2014
Juciano Gasparotto; Nauana Somensi; Rafael Calixto Bortolin; Carolina Saibro Girardi; Alice Kunzler; Thallita Kelly Rabelo; Carlos Eduardo Schnorr; Karla Suzana Moresco; Valquiria Linck Bassani; Francini K.J. Yatsu; M. Vizzotto; Maria do Carmo Bassols Raseira; Alfeu Zanotto-Filho; José Cláudio Fonseca Moreira; Daniel Pens Gelain
The present study was elaborated to comparatively evaluate the preventive effect of different peach-derived products obtained from preserved fruits (Syrup and Preserve Pulp Peach [PPP]) and from fresh peels and pulps (Peel and Fresh Pulp Peach [FPP]) in a model of liver/renal toxicity and inflammation induced by carbon tetrachloride (CCl4) in rats. Tissue damage (carbonyl, thiobarbituric acid reactive species and sulfhydril), antioxidant enzymes activity (catalase and superoxide dismutase) and inflammatory parameters [tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels, and receptor for advanced glycation end-products (RAGE) and nuclear factor (NF)κB-p65 immunocontent] were investigated. Our findings demonstrated that Peel, PPP and FPP (200 or 400 mg/kg) daily administration by oral gavage for 30 days conferred a significant protection against CCl4-induced antioxidant enzymes activation and, most importantly, oxidative damage to lipids and proteins as well as blocked induction of inflammatory mediators such as TNF-α, IL-1β, RAGE and NFκB. This antioxidant/anti-inflammatory effect seems to be associated with the abundance of carotenoids and polyphenols present in peach-derived products, which are enriched in fresh-fruit-derived preparations (Peel and FPP) but are also present in PPP. The Syrup - which was the least enriched in antioxidants - displayed no protective effect in our experiments. These effects cumulated in decreased levels of transaminases and lactate dehydrogenase leakage into serum and maintenance of organ architecture. Therefore, the herein presented results show evidence that supplementation with peach products may be protective against organ damage caused by oxidative stress, being interesting candidates for production of antioxidant-enriched functional foods.
Brain Behavior and Immunity | 2015
Juciano Gasparotto; Mario Roberto Senger; Alice Kunzler; Adriana Degrossoli; Salvatore G. De Simone; Rafael Calixto Bortolin; Nauana Somensi; Carolina Saibro Girardi; Celeste da Silva Freitas de Souza; Kátia da Silva Calabrese; Felipe Dal-Pizzol; José Cláudio Fonseca Moreira; Floriano Paes Silva-Jr; Daniel Pens Gelain
Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimers disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1β, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection.
Cell Stress & Chaperones | 2014
Marcelo Sartori Grunwald; André Simões Pires; Alfeu Zanotto-Filho; Juciano Gasparotto; Daniel Pens Gelain; Diogo Ribeiro Demartini; Cinthia Maria Schöler; Paulo Ivo Homem de Bittencourt; José Cláudio Fonseca Moreira
Expression of intracellular HSP70 is associated with cytoprotective effects against a wide range of stressful stimuli, such as inflammation, oxidative stress, hypoxia, endotoxins, infections, and fever. This cytoprotective effect is mainly attributed to their ability to stabilize protein structures through chaperone-like reversible interactions. HSP70 was recently detected in the extracellular medium, and its presence in serum is commonly associated with pathological situations, where it exerts modulatory effects on cells of the immune system. Previously, we have described the relationship between serum HSP70 levels, oxidant status, and clinical outcome of septic patients; the group of patients with higher prooxidant status and higher serum HSP70 had also higher mortality. To investigate the possible association between oxidized HSP70 and cytoprotection or cell death, we incubated RAW 264.7 macrophages with oxidized HSP70 and evaluated nitrite production, cell proliferation, cell viability, TNF-α release, and phagocytic activity. We also evaluated structural modifications caused by oxidation in purified HSP70. Oxidation of HSP70 altered its protein structure; besides, the modulatory effect of oxidized HSP70 on RAW264.7 cells was different from that of native HSP70. Macrophages treated with oxidized HSP70 presented lower proliferation and viability, lower phagocytic activity, and lower TNF-α release. These results indicate that oxidation of extracellular HSP70 modified its signaling properties, causing alterations on its modulatory effects on macrophage function and viability.
Cell Biochemistry and Function | 2012
Matheus Augusto de Bittencourt Pasquali; Marcos Roberto de Oliveira; Marco Antônio De Bastiani; Ricardo Fagundes da Rocha; Carlos Eduardo Schnorr; Juciano Gasparotto; Daniel Pens Gelain; José Cláudio Fonseca Moreira
Based on the fact that vitamin A in clinical doses is a potent pro‐oxidant agent to the lungs, we investigated here the role of nitric oxide (NO•) in the disturbances affecting the lung redox environment in vitamin A‐treated rats (retinol palmitate, doses of 1000–9000 IU·kg−1·day−1) for 28 days. Lung mitochondrial function and redox parameters, such as lipid peroxidation, protein carbonylation and the level of 3‐nytrotyrosine, were quantified. We observed, for the first time, that vitamin A supplementation increases the levels of 3‐nytrotyrosine in rat lung mitochondria. To determine whether nitric oxide (NO •) or its derivatives such as peroxynitrite (ONOO‐) was involved in this damage, animals were co‐treated with the nitric oxide synthase inhibitor L‐NAME (30 mg·kg−1, four times a week), and we analysed if this treatment prevented (or minimized) the biochemical disturbances resulting from vitamin A supplementation. We observed that L‐NAME inhibited some effects caused by vitamin A supplementation. Nonetheless, L‐NAME was not able to reverse completely the negative effects triggered by vitamin A supplementation, indicating that other factors rather than only NO• or ONOO‐ exert a prominent role in mediating the redox effects in the lung of rats that received vitamin A supplementation. Copyright
Collaboration
Dive into the Juciano Gasparotto's collaboration.
Matheus Augusto de Bittencourt Pasquali
Universidade Federal do Rio Grande do Sul
View shared research outputs