Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jude S. Morton is active.

Publication


Featured researches published by Jude S. Morton.


Cardiovascular Research | 2009

Effects of hypoxia-induced intrauterine growth restriction on cardiopulmonary structure and function during adulthood

Christian F. Rueda-Clausen; Jude S. Morton; Sandra T. Davidge

AIMS Intrauterine growth restriction (IUGR), a condition affecting 7-15% of all pregnancies, is associated with an increased mortality rate during adulthood. Several animal models have been developed to study the effects of IUGR during adulthood. However, the in vivo characteristics of these models are still unknown. The main aim of this work was to evaluate, in vivo, the effects of IUGR on cardiopulmonary structure and function during adulthood. METHODS AND RESULTS Pregnant Sprague Dawley rats were exposed to hypoxic (12% O2) or normoxic (21% O2) environments between day 15 and 21 of pregnancy. Offspring were raised to 4 or 12 months old when a complete in vivo echocardiographic study was performed. In addition, ex vivo morphometry and isolated working heart experiments were performed. At birth, pups exposed to hypoxia had a smaller body weight and larger heart/body weight than controls. At 4 months of age, there were no significant differences between the groups. At 12 months of age, male but not female offspring exposed to prenatal hypoxia had smaller body weights and signs of left ventricular hypertrophy. In addition, both male and females animals exposed to prenatal hypoxia showed in vivo and ex vivo signs of left ventricular diastolic dysfunction and pulmonary hypertension by 12 months of age. CONCLUSION Our study demonstrated that hypoxia-induced IUGR is associated with the development of chronic cardiopulmonary dysfunction during ageing. The implication of these findings is the potential usefulness of neonatal diagnosis as a predictor of cardiopulmonary outcomes during adulthood.


Biochimica et Biophysica Acta | 2013

Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice

Vernon W. Dolinsky; Subhadeep Chakrabarti; Troy J. Pereira; Tatsujiro Oka; Jody Levasseur; Donna L. Beker; Beshay N.M. Zordoky; Jude S. Morton; J. Nagendran; Gary D. Lopaschuk; Sandra T. Davidge; Jason R. B. Dyck

Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1-AMPK-eNOS signaling axis.


Diabetes | 2011

Hypoxia-Induced Intrauterine Growth Restriction Increases the Susceptibility of Rats to High-Fat Diet–Induced Metabolic Syndrome

Christian F. Rueda-Clausen; Vernon W. Dolinsky; Jude S. Morton; Spencer D. Proctor; Jason R.B. Dyck; Sandra T. Davidge

OBJECTIVE It is recognized that there is a remarkable variability in the systemic response to high-fat (HF) diets that cannot be completely explained by genetic factors. In addition, pregnancy complications leading to intrauterine growth restriction (IUGR) have been associated with an increased risk of developing metabolic syndrome (MetS) later in life. Thus, we hypothesized that offspring born with IUGR exhibit permanent metabolic changes that make them more susceptible to HF diet–induced MetS. RESEARCH DESIGN AND METHODS SD rats born normal (control) or with hypoxia-induced IUGR were randomized to low-fat (10% fat) or HF (45% fat) diets. After 9 weeks of feeding, physiological and molecular pathways involved in the MetS were evaluated. RESULTS IUGR offspring exhibited decreased energy intake and physical activity relative to controls. In offspring fed a HF diet, IUGR was associated with decreased total body fat content, a relative increase in intra-abdominal fat deposition and adipocyte size, an increase in fasting plasma concentrations of leptin, triglyceride and free fatty acids, and an increased concentration of triglycerides and ceramides in both liver and skeletal muscle. These changes in lipid homeostasis were accompanied by in vivo insulin resistance and impaired glucose tolerance and associated with increased phosphorylation of protein kinase C θ, inhibition of insulin receptor substrate 1, and a decreased activation of protein kinase B (PKB; also known as Akt) in liver and skeletal muscle in response to insulin. CONCLUSIONS IUGR enhances specific deleterious metabolic responses to a HF diet. Our results suggest that offspring born with IUGR may require special attention and follow-up to prevent the early onset of MetS.


Hypertension | 2010

Calorie Restriction Prevents Hypertension and Cardiac Hypertrophy in the Spontaneously Hypertensive Rat

Vernon W. Dolinsky; Jude S. Morton; Tatsujiro Oka; Isabelle Robillard-Frayne; Mariel Bagdan; Gary D. Lopaschuk; Christine Des Rosiers; Kenneth Walsh; Sandra T. Davidge; Jason R. B. Dyck

Because recent evidence demonstrated that calorie restriction (CR) has numerous beneficial cardiovascular effects, we investigated whether short-term CR could reduce hypertension and prevent cardiac hypertrophy inherent to the nonobese spontaneously hypertensive rat (SHR). After 5 weeks of either ad libitum feeding or short-term CR, SHRs subjected to short-term CR had lower systolic blood pressure (BP) and reduced left ventricular wall thickness as assessed by noninvasive tail-cuff BP measurements and echocardiography, respectively. In addition, ultrasound measurements of the femoral artery revealed that flow-mediated vasodilation was significantly improved in SHRs with CR compared to controls. Moreover, pressure myography of isolated mesenteric arteries and subsequent histological and biochemical analysis of these arteries demonstrated that short-term CR improved vascular compliance, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide bioavailability, and reduced vascular remodeling compared to ad libitum-fed SHRs. Although these effects are likely multifactorial, they were associated with elevated levels of the circulating adipokine, adiponectin, and enhanced AMP-activated protein kinase (AMPK) activity. To provide evidence that elevated adiponectin levels in the SHR is sufficient to prevent an increase in BP, adenoviral-mediated overexpression of adiponectin increased circulating levels of adiponectin, reduced BP, and activated the AMPK/eNOS pathway in the absence of CR. Overall, our findings provide compelling evidence that short-term CR exerts beneficial effects in the SHR via stimulation of an adiponectin/AMPK/eNOS signaling axis. As a result, CR may serve as an effective nonpharmacological treatment of hypertension, and targeting the adiponectin/AMPK/eNOS pathway may improve treatment of hypertension.


Cardiovascular Research | 2011

Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion

Christian F. Rueda-Clausen; Jude S. Morton; Gary D. Lopaschuk; Sandra T. Davidge

AIMS Adult offspring who are born intrauterine growth restricted (IUGR) are at risk of developing cardiovascular diseases during adulthood. Additionally, several cardiac diseases are associated with changes in myocardial energy metabolism. However, the potential long-term effects of being born IUGR on cardiac energetics are unknown. The aim of this study was to assess the long-term effect of IUGR on cardiac performance and energy metabolism under aerobic conditions and after ischaemia/reperfusion (IR) injury. METHODS AND RESULTS To induce IUGR, pregnant Sprague-Dawley rats were randomly assigned to hypoxic (11.5% O(2)) or control (21% O(2)) environments from day 15 to 21 of pregnancy. Cardiac susceptibility to IR was evaluated in male and female offspring at 4 (young-adult) or 12 (ageing) months of age using isolated working hearts. Cardiac production of energy was evaluated using radiolabelled substrates. Both male and female IUGR offspring exhibited an increased susceptibility to IR injury compared with controls (P< 0.05) as well as an increased post-ischaemic production of protons (P< 0.001) secondary to a mismatch between myocardial glycolysis and glucose oxidation rates. Moreover, offspring born IUGR exhibited an increased myocardial production of acetyl-CoA during reperfusion. The mismatch between energy production and cardiac performance indicates that in IUGR offspring, cardiac efficiency during reperfusion was decreased relative to controls. CONCLUSION Our results suggest that hypoxia-induced IUGR has long-term effects on cardiac susceptibility to IR injury that are independent of sex and age. Moreover, we identified a mismatch in glucose metabolism, leading to proton accumulation in the post-ischaemic myocardium of offspring born IUGR as a potential mechanism involved.


Microcirculation | 2014

Vascular Dysfunction in Preeclampsia

Lesley J. Brennan; Jude S. Morton; Sandra T. Davidge

Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro‐ and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted

Jude S. Morton; Christian F. Rueda-Clausen; Sandra T. Davidge

Numerous epidemiological studies have shown that cardiovascular dysfunction in adult life may be programmed by compromised growth in utero. Aging is a risk factor for vascular endothelial-dependent dysfunction. After birth, the impact of intrauterine growth restriction (IUGR) on normal aging mechanisms of vascular dysfunction is not known. We hypothesized that IUGR would cause changes in vascular function that would affect the mechanisms of endothelium-dependent vasodilation later in life in an age- or sex-dependent manner. To create an IUGR model, pregnant Sprague-Dawley rats were placed in a hypoxic (12% O(2)) or control (room air, 21% O(2)) environment from days 15 to 21 of the pregnancy, and both male and female offspring were investigated at 4 or 12 mo of age. Endothelial function was assessed in small mesenteric arteries using methacholine (MCh)-induced vasodilation in a wire myograph system. The involvement of nitric oxide (NO), prostaglandins, and endothelium-derived hyperpolarizing factor (EDHF) was assessed using the inhibitors N(omega)-nitro-l-arginine methyl ester hydrochloride, meclofenamate, or a combination of apamin and TRAM-34 (SK(Ca) and IK(Ca) blockers), respectively. EDHF-induced vasodilation was further investigated by using inhibitors of P450 epoxygenases [N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide] and gap junctions (18alpha-glycyrrhetinic acid). NO-mediated vasodilation was significantly reduced in aged controls and both young and aged IUGR females. EDHF-mediated vasodilation was maintained in all groups; however, an additional involvement of gap junctions was found in females exposed to hypoxia in utero, which may represent a compensatory mechanism. A change in the mechanisms of vasodilation occurring at an earlier age in IUGR offspring may predispose them to adult cardiovascular diseases.


Diabetes | 2011

Continued Postnatal Administration of Resveratrol Prevents Diet-Induced Metabolic Syndrome in Rat Offspring Born Growth Restricted

Vernon W. Dolinsky; Christian F. Rueda-Clausen; Jude S. Morton; Sandra T. Davidge; Jason R.B. Dyck

OBJECTIVE A prenatal hypoxic insult leading to intrauterine growth restriction (IUGR) increases the susceptibility to develop metabolic syndrome (MetS) later in life. Since resveratrol (Resv), the polyphenol produced by plants, exerts insulin-sensitizing effects, we tested whether Resv could prevent deleterious metabolic effects of being born IUGR. RESEARCH DESIGN AND METHODS Pregnant rats were exposed to either a normoxic (control; 21% O2) or a hypoxic (IUGR; 11.5% O2) environment during the last third of gestation. After weaning, male offspring were randomly assigned to receive either a high-fat (HF; 45% fat) diet or an HF diet with Resv (4 g/kg diet) for 9 weeks when various parameters of the MetS were measured. RESULTS Relative to normoxic controls, hypoxia-induced IUGR offspring developed a more severe MetS, including glucose intolerance and insulin resistance, increased intra-abdominal fat deposition and intra-abdominal adipocyte size, and increased plasma triacylglycerol (TG) and free fatty acids, as well as peripheral accumulation of TG, diacylglycerol, and ceramides. In only IUGR offspring, the administration of Resv reduced intra-abdominal fat deposition to levels comparable with controls, improved the plasma lipid profile, and reduced accumulation of TG and ceramides in the tissues. Moreover, Resv ameliorated insulin resistance and glucose intolerance as well as impaired Akt signaling in the liver and skeletal muscle of IUGR offspring and activated AMP-activated protein kinase, which likely contributed to improved metabolic parameters in Resv-treated IUGR rats. CONCLUSIONS Our results suggest that early, postnatal administration of Resv can improve the metabolic profile of HF-fed offspring born from pregnancies complicated by IUGR.


Canadian Journal of Cardiology | 2014

Mechanisms of Estrogen Effects on the Endothelium: An Overview

Subhadeep Chakrabarti; Jude S. Morton; Sandra T. Davidge

In this review, we aim to provide an overview of the recent advances in understanding estrogen effects on the vascular endothelium. Epidemiological studies suggest the female sex hormone estrogen mediates the relative protection of premenopausal women against cardiovascular disease, compared with age-matched men. However, results from clinical trials of exogenous estrogen supplementation in postmenopausal women have been disappointing, generating much controversy about the role of estrogen and demonstrating the need for further research in this field. Here we have discussed the roles of different estrogen receptors (ERs) such as ERα, ERβ, and G-protein coupled receptor 30; the complex genomic and nongenomic signalling pathways downstream to ER activation and the factors such as age, menopause, pregnancy, and diabetes that might alter estrogen responses. The common themes of this discussion are the complexity and diversity of endothelial estrogen responses and their modulation by 1 or more coexisting factors. Finally, we summarize the emerging therapeutic options including improved targeting of individual ERs and signalling pathways that might maximize the therapeutic potential of estrogenic compounds while minimizing their harmful side effects.


PLOS ONE | 2013

Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats

Kaustav Majumder; Subhadeep Chakrabarti; Jude S. Morton; Sareh Panahi; Susan Kaufman; Sandra T. Davidge; Jianping Wu

Background There is a growing interest in using functional food components as therapy for cardiovascular diseases such as hypertension. We have previously characterized a tri-peptide IRW (Ile-Arg-Trp) from egg white protein ovotransferrin; this peptide showed anti-inflammatory, anti-oxidant and angiotensin converting enzyme (ACE) inhibitor properties in vitro. Given the pathogenic roles played by angiotensin, oxidative stress and inflammation in the spontaneously hypertensive rat (SHR), we tested the therapeutic potential of IRW in this well-established model of hypertension. Methods and Results 16–17 week old male SHRs were orally administered IRW at either a low dose (3 mg/Kg BW) or a high dose (15 mg/Kg BW) daily for 18 days. Blood pressure (BP) and heart rate were measured by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and measuring markers of inflammation. IRW treatment attenuated mean BP by ~10 mmHg and ~40 mmHg at the low- and high-dose groups respectively compared to untreated SHRs. Heart rate was not affected. Reduction in BP was accompanied by the restoration of diurnal variations in BP, preservation of nitric oxide dependent vasorelaxation, as well as reduction of plasma angiotensin II, other inflammatory markers and tissue fibrosis. Conclusion Our results demonstrate anti-hypertensive effects of IRW in vivo likely mediated through ACE inhibition, endothelial nitric oxide synthase and anti-inflammatory properties.

Collaboration


Dive into the Jude S. Morton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amin Shah

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephane L. Bourque

Manchester Academic Health Science Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge