Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jude W. Shavlik is active.

Publication


Featured researches published by Jude W. Shavlik.


Artificial Intelligence | 1994

Knowledge-based artificial neural networks

Geoffrey G. Towell; Jude W. Shavlik

Abstract Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset information missing from the other source. By so doing, a hybrid learning system should learn more effectively than systems that use only one of the information sources. KBANN ( Knowledge-Based Artificial Neural Networks ) is a hybrid learning system built on top of connectionist learning techniques. It maps problem-specific “domain theories”, represented in propositional logic, into neural networks and then refines this reformulated knowledge using backpropagation. KBANN is evaluated by extensive empirical tests on two problems from molecular biology. Among other results, these tests show that the networks created by KBANN generalize better than a wide variety of learning systems, as well as several techniques proposed by biologists.


Machine Learning | 1993

Extracting Refined Rules from Knowledge-Based Neural Networks

Geoffrey G. Towell; Jude W. Shavlik

Neural networks, despite their empirically proven abilities, have been little used for the refinement of existing knowledge because this task requires a three-step process. First, knowledge must be inserted into a neural network. Second, the network must be refined. Third, the refined knowledge must be extracted from the network. We have previously described a method for the first step of this process. Standard neural learning techniques can accomplish the second step. In this article, we propose and empirically evaluate a method for the final, and possibly most difficult, step. Our method efficiently extracts symbolic rules from trained neural networks. The four major results of empirical tests of this method are that the extracted rules 1) closely reproduce the accuracy of the network from which they are extracted; 2) are superior to the rules produced by methods that directly refine symbolic rules; 3) are superior to those produced by previous techniques for extracting rules from trained neural networks; and 4) are “human comprehensible.” Thus, this method demonstrates that neural networks can be used to effectively refine symbolic knowledge. Moreover, the rule-extraction technique developed herein contributes to the understanding of how symbolic and connectionist approaches to artificial intelligence can be profitably integrated.


Readings in knowledge acquisition and learning | 1993

Symbolic and neural learning algorithms: an experimental comparison

Jude W. Shavlik; Raymond J. Mooney; Geoffrey G. Towell

Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perceptron and backpropagation neural learning algorithms have been performed using five large, real-world data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Experimental results suggest that backpropagation can work significantly better on data sets containing numerical data. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs. Backpropagation occasionally outperforms the other two systems when given relatively small amounts of training data. It is slightly more accurate than ID3 when examples are noisy or incompletely specified. Finally, backpropagation more effectively utilizes a “distributed” output encoding.


Connection Science | 1996

Actively Searching for an Effective Neural Network Ensemble

David W. Opitz; Jude W. Shavlik

A neural network NN ensemble is a very successful technique where the outputs of a set of separately trained NNs are combined to form one unified prediction. An effective ensemble should consist of a set of networks that are not only highly correct, but ones that make their errors on different parts of the input space as well; however, most existing techniques only indirectly address the problem of creating such a set. We present an algorithm called ADDEMUP that uses genetic algorithms to search explicitly for a highly diverse set of accurate trained networks. ADDEMUP works by first creating an initial population, then uses genetic operators to create new networks continually, keeping the set of networks that are highly accurate while disagreeing with each other as much as possible. Experiments on four real-world domains show that ADDEMUP is able to generate a set of trained networks that is more accurate than several existing ensemble approaches. Experiments also show ADDEMUP is able to incorporate prior...


international conference on machine learning | 1994

Using sampling and queries to extract rules from trained neural networks

Mark Craven; Jude W. Shavlik

Abstract Concepts learned by neural networks are difficult to understand because they are represented using large assemblages of real-valued parameters. One approach to understanding trained neural networks is to extract symbolic rules that describe their classification behavior. There are several existing rule-extraction approaches that operate by searching for such rules. We present a novel method that casts rule extraction not as a search problem, but instead as a learning problem. In addition to learning from training examples, our method exploits the property that networks can be efficiently queried. We describe algorithms for extracting both conjunctive and M -of- N rules, and present experiments that show that our method is more efficient than conventional search-based approaches.


Future Generation Computer Systems | 1997

Using neural networks for data mining

Mark Craven; Jude W. Shavlik

Abstract Neural networks have been successfully applied in a wide range of supervised and unsupervised learning applications. Neural-network methods are not commonly used for data-mining tasks, however, because they often produce incomprehensible models and require long training times. In this article, we describe neural-network learning algorithms that are able to produce comprehensible models, and that do not require excessive training times. Specifically, we discuss two classes of approaches for data mining with neural networks. The first type of approach, often called rule extraction, involves extracting symbolic models from trained neural networks. The second approach is to directly learn simple, easy-to-understand networks. We argue that, given the current state-of-the-art, neural-network methods deserve a place in the tool boxes of data-mining specialists.


very large data bases | 2011

Tuffy: scaling up statistical inference in Markov logic networks using an RDBMS

Feng Niu; Christopher Ré; AnHai Doan; Jude W. Shavlik

Markov Logic Networks (MLNs) have emerged as a powerful framework that combines statistical and logical reasoning; they have been applied to many data intensive problems including information extraction, entity resolution, and text mining. Current implementations of MLNs do not scale to large real-world data sets, which is preventing their widespread adoption. We present Tuffy that achieves scalability via three novel contributions: (1) a bottom-up approach to grounding that allows us to leverage the full power of the relational optimizer, (2) a novel hybrid architecture that allows us to perform AI-style local search efficiently using an RDBMS, and (3) a theoretical insight that shows when one can (exponentially) improve the efficiency of stochastic local search. We leverage (3) to build novel partitioning, loading, and parallel algorithms. We show that our approach outperforms state-of-the-art implementations in both quality and speed on several publicly available datasets.


intelligent user interfaces | 2000

Learning users' interests by unobtrusively observing their normal behavior

Jeremy Goecks; Jude W. Shavlik

For intelligent interfaces attempting to learn a users interests, the cost of obtaining labeled training instances is prohibitive because the user must directly label each training instance, and few users are willing to do so. We present an approach that circumvents the need for human-labeled pages. Instead, we learn “surrogate” tasks where the desired output is easily measured, such as the number of hyperlinks clicked on a page or the amount of scrolling performed. Our assumption is that these outputs will highly correlate with the users interests. In other words, by unobtrusively “observing” the users behavior we are able to learn functions of value. For example, an intelligent browser could silently observe the users browsing behavior during the day, then use these training examples to learn such functions and gather, during the middle of the night, pages that are likely to be of interest to the user. Previous work has focused on learning a user profile by passively observing the hyperlinks clicked on and those passed over. We extend this approach by measuring user mouse and scrolling activity in addition to user browsing activity. We present empirical results that demonstrate our agent can accurately predict some easily measured aspects of ones use of his or her browser.


Machine Learning | 1996

Creating advice-taking reinforcement learners

Richard Maclin; Jude W. Shavlik

Learning from reinforcements is a promising approach for creating intelligent agents. However, reinforcement learning usually requires a large number of training episodes. We present and evaluate a design that addresses this shortcoming by allowing a connectionist Q-learner to accept advice given, at any time and in a natural manner, by an external observer. In our approach, the advice-giver watches the learner and occasionally makes suggestions, expressed as instructions in a simple imperative programming language. Based on techniques from knowledge-based neural networks, we insert these programs directly into the agents utility function. Subsequent reinforcement learning further integrates and refines the advice. We present empirical evidence that investigates several aspects of our approach and shows that, given good advice, a learner can achieve statistically significant gains in expected reward. A second experiment shows that advice improves the expected reward regardless of the stage of training at which it is given, while another study demonstrates that subsequent advice can result in further gains in reward. Finally, we present experimental results that indicate our method is more powerful than a naive technique for making use of advice.


Machine Learning | 1991

Symbolic and Neural Learning Algorithms: An Experimental Comparison

Jude W. Shavlik; Raymond J. Mooney; Geoffrey G. Towell

Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perception and backpropagation neural learning algorithms have been performed using five large, real-world data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Experimental results suggest that backpropagation can work significantly better on data sets containing numerical data. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs. Backpropagation occasionally outperforms the other two systems when given relatively small amounts of training data. It is slightly more accurate than ID3 when examples are noisy or incompletely specified. Finally, backpropagation more effectively utilizes a “distributed” output encoding.

Collaboration


Dive into the Jude W. Shavlik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sriraam Natarajan

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Geoffrey G. Towell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David C. Page

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tushar Khot

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Trevor Walker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark Craven

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kristian Kersting

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Elizabeth S. Burnside

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gautam Kunapuli

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge