Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judilyn Fuentes-Duculan is active.

Publication


Featured researches published by Judilyn Fuentes-Duculan.


Journal of Investigative Dermatology | 2008

Psoriasis Vulgaris Lesions Contain Discrete Populations of Th1 and Th17 T Cells

Michelle A. Lowes; Toyoko Kikuchi; Judilyn Fuentes-Duculan; Irma Cardinale; Lisa C. Zaba; Asifa S. Haider; Edward P. Bowman; James G. Krueger

The importance of T helper 17 (Th17) cells in inflammation and autoimmunity is now being appreciated. We analyzed psoriasis skin lesions and peripheral blood for the presence of IL-17-producing T cells. We localized Th17 cells predominantly to the dermis of psoriasis skin lesions, confirmed that IL-17 mRNA increased with disease activity, and demonstrated that IL-17 mRNA expression normalized with cyclosporine therapy. IL-22 mRNA expression mirrored IL-17 and both were downregulated in parallel with keratin 16. Th17 cells are a discrete population, separate from Th1 cells (which are also in psoriasis lesions), and Th2 cells. Our findings suggest that psoriasis is a mixed Th1 and Th17 inflammatory environment. Th17 cells may be proximal regulators of psoriatic skin inflammation, and warrant further attention as therapeutic targets.


British Journal of Dermatology | 2008

Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways

K.E. Nograles; L.C. Zaba; Emma Guttman-Yassky; Judilyn Fuentes-Duculan; Mayte Suárez-Fariñas; I. Cardinale; A. Khatcherian; Juana Gonzalez; K.C. Pierson; T.R. White; C. Pensabene; I. Coats; I. Novitskaya; Michelle A. Lowes; James G. Krueger

Background  Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines, yet the relative contribution of interferon (IFN)‐γ, interleukin (IL)‐17 and IL‐22 on disease pathogenesis is still unknown.


Journal of Investigative Dermatology | 2009

Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells.

Lisa C. Zaba; Judilyn Fuentes-Duculan; Narat John Eungdamrong; Maria Veronica Abello; Inna Novitskaya; Katherine C. Pierson; Juana Gonzalez; James G. Krueger; Michelle A. Lowes

Myeloid dermal dendritic cells (DCs) accumulate in chronically inflamed tissues such as psoriasis. The importance of these cells for psoriasis pathogenesis is suggested by comparative T-cell and DC-cell counts, where DCs outnumber T cells. We have previously identified CD11c(+)-blood dendritic cell antigen (BDCA)-1(+) cells as the main resident dermal DC population found in normal skin. We now show that psoriatic lesional skin has two populations of dermal DCs: (1) CD11c(+)BDCA-1(+) cells, which are phenotypically similar to those contained in normal skin and (2) CD11c(+)BDCA-1(-) cells, which are phenotypically immature and produce inflammatory cytokines. Although BDCA-1(+) DCs are not increased in number in psoriatic lesional skin compared with normal skin, BDCA-1(-) DCs are increased 30-fold. For functional studies, we FACS-sorted psoriatic dermal single-cell suspensions to isolate these two cutaneous DC populations, and cultured them as stimulators in an allogeneic mixed leukocyte reaction. Both BDCA-1(+) and BDCA-1(-) myeloid dermal DC populations induced T-cell proliferation, and polarized T cells to become T helper 1 (Th1) and T helper 17 (Th17) cells. In addition, psoriatic dermal DCs induced a population of activated T cells that simultaneously produced IL-17 and IFN-gamma, which was not induced by normal skin dermal DCs. As psoriasis is believed to be a mixed Th17/Th1 disease, it is possible that induction of these IL-17(+)IFN-gamma(+) cells is pathogenic. These cytokines, the T cells that produce them, and the inducing inflammatory DCs may all be important new therapeutic targets in psoriasis.


Journal of Immunology | 2008

Low Expression of the IL-23/Th17 Pathway in Atopic Dermatitis Compared to Psoriasis

Emma Guttman-Yassky; Michelle A. Lowes; Judilyn Fuentes-Duculan; Lisa C. Zaba; Irma Cardinale; Kristine E. Nograles; Artemis Khatcherian; Inna Novitskaya; John A. Carucci; Reuven Bergman; James G. Krueger

The classical Th1/Th2 paradigm previously defining atopic dermatitis (AD) and psoriasis has recently been challenged with the discovery of Th17 T cells that synthesize IL-17 and IL-22. Although it is becoming evident that many Th1 diseases including psoriasis have a strong IL-17 signal, the importance of Th17 T cells in AD is still unclear. We examined and compared skin biopsies from AD and psoriasis patients by gene microarray, RT-PCR, immunohistochemistry, and immunofluorescence. We found a reduced genomic expression of IL-23, IL-17, and IFN-γ in AD compared with psoriasis. To define the effects of IL-17 and IL-22 on keratinocytes, we performed gene array studies with cytokine-treated keratinocytes. We found lipocalin 2 and numerous other innate defense genes to be selectively induced in keratinocytes by IL-17. IFN-γ had no effect on antimicrobial gene-expression in keratinocytes. In AD skin lesions, protein and mRNA expression of lipocalin 2 and other innate defense genes (hBD2, elafin, LL37) were reduced compared with psoriasis. Although AD has been framed by the Th1/Th2 paradigm as a Th2 polar disease, we present evidence that the IL-23/Th17 axis is largely absent, perhaps accounting for recurrent skin infections in this disease.


Journal of Clinical Investigation | 2007

Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages

Lisa C. Zaba; Judilyn Fuentes-Duculan; Ralph M. Steinman; James G. Krueger; Michelle A. Lowes

We used a panel of monoclonal antibodies to characterize DCs in the dermis of normal human skin. Staining for the CD11c integrin, which is abundant on many kinds of DCs, revealed cells in the upper dermis. These cells were positive for blood DC antigen-1 (BDCA-1; also known as CD1c), HLA-DR, and CD45, markers that are also expressed by circulating myeloid DCs. A small subset of CD11c+ dermal cells expressed DEC-205/CD205 and DC-lysosomal-associated membrane glycoprotein/CD208 (DC-LAMP/CD208), suggesting some differentiation or maturation. When BDCA-1+ cells were selected from collagenase digests of normal dermis, they proved to be strong stimulators for T cells in a mixed leukocyte reaction. A second major population of cells located throughout the dermis was positive for factor XIIIA (FXIIIA), but lacked CD11c and BDCA-1. They expressed the macrophage scavenger receptor CD163 and stained weakly for HLA-DR and CD45. Isolated CD163+ dermal cells were inactive in stimulating T cell proliferation, but in biopsies of tattoos, these cells were selectively laden with granular pigments. Plasmacytoid DCs were also present in the dermis, marked by CD123 and BDCA-2. In summary, the normal dermis contains typical immunostimulatory myeloid DCs identified by CD11c and BDCA-1, as well as an additional population of poorly stimulatory macrophages marked by CD163 and FXIIIA.


The Journal of Allergy and Clinical Immunology | 2009

Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes.

Lisa C. Zaba; Mayte Suárez-Fariñas; Judilyn Fuentes-Duculan; Kristine E. Nograles; Emma Guttman-Yassky; Irma Cardinale; Michelle A. Lowes; James G. Krueger

BACKGROUND TNF inhibitors have revolutionized the treatment of psoriasis vulgaris as well as psoriatic and rheumatoid arthritis and Crohn disease. Despite our understanding that these agents block TNF, their complex mechanism of action in disease resolution is still unclear. OBJECTIVE To analyze globally the genomic effects of TNF inhibition in patients with psoriasis, and to compare genomic profiles of patients who responded or did not respond to treatment. METHODS In a clinical trial using etanercept TNF inhibitor to treat psoriasis vulgaris (n = 15), Affymetrix gene arrays were used to analyze gene profiles in lesional skin at multiple time points during drug treatment (baseline and weeks 1, 2, 4, and 12) compared with nonlesional skin. Patients were stratified as responders (n = 11) or nonresponders (n = 4) on the basis of histologic disease resolution. Cluster analysis was used to define gene sets that were modulated with similar magnitude and velocity over time. RESULTS In responders, 4 clusters of downregulated genes and 3 clusters of upregulated genes were identified. Genes downmodulated most rapidly reflected direct inhibition of myeloid lineage immune genes. Upregulated genes included the stable dendritic cell population genes CD1c and CD207 (langerin). Comparison of responders and nonresponders revealed rapid downmodulation of innate IL-1beta and IL-8 sepsis cascade cytokines in both groups, but only responders downregulated IL-17 pathway genes to baseline levels. CONCLUSION Although both responders and nonresponders to etanercept inactivated sepsis cascade cytokines, response to etanercept is dependent on inactivation of myeloid dendritic cell genes and inactivation of the T(H)17 immune response.


The Journal of Allergy and Clinical Immunology | 2009

Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis

Emma Guttman-Yassky; Mayte Suárez-Fariñas; Andrea Chiricozzi; Kristine E. Nograles; Avner Shemer; Judilyn Fuentes-Duculan; Irma Cardinale; Peng Lin; Reuven Bergman; Anne M. Bowcock; James G. Krueger

BACKGROUND Psoriasis and atopic dermatitis (AD) are common, complex inflammatory skin diseases. Both diseases display immune infiltrates in lesions and epidermal growth/differentiation alterations associated with a defective skin barrier. An incomplete understanding of differences between these diseases makes it difficult to compare human disease pathology to animal disease models. OBJECTIVE To characterize differences between these diseases in expression of genes related to epidermal growth/differentiation and inflammatory circuits. METHODS We performed genomic profiling of mRNA in chronic psoriasis (n = 15) and AD (n = 18) skin lesions compared with normal human skin (n = 15). RESULTS As expected, clear disease classifications could be constructed on the basis of expected immune polarity (T(H)1, T(H)2, T(H)17) differences. However, even more striking differences were identified in epidermal differentiation programs that could be used for precise disease classifications. Although both psoriasis and AD skin lesions displayed regenerative epidermal hyperplasia, which is a general alteration in epidermal growth, keratinocyte terminal differentiation was differentially polarized. In AD, we found selective defects in expression of multiple genes encoding the cornified envelope, with the largest alteration in loricrin (expressed at 2% of the level of normal skin). At the ultrastructural level, the cornified envelope in AD was broadly defective with highly decreased compaction of corneocytes and reduced intercellular lipids. Hence, the entire keratinocyte terminal differentiation program (cytoplasmic compaction, cornification, and lipid release) is defective in AD, potentially underlying the immune differences. CONCLUSION Our study shows that although alterations in barrier responses exist in both diseases, epidermal differentiation is differentially polarized, with major implications for primary disease pathogenesis.


Journal of Investigative Dermatology | 2012

Expanding the Psoriasis Disease Profile: Interrogation of the Skin and Serum of Patients with Moderate-to-Severe Psoriasis

Mayte Suárez-Fariñas; Katherine Li; Judilyn Fuentes-Duculan; Karen Hayden; Carrie Brodmerkel; James G. Krueger

Psoriasis is a complex disease with an expanding definition of its pathological features. We sought to expand/refine the psoriasis transcriptome using 85 paired lesional and non-lesional samples from a cohort of patients with moderate-to-severe psoriasis vulgaris who were not receiving active psoriasis therapy. This new analysis identified 4,175 probe sets (representing 2,725 unique known genes) as being differentially expressed in psoriasis lesions compared with matched biopsies of non-lesional skin when the following criteria were applied: >2-fold change and false discovery rate <0.05. These probe sets represent the largest and most comprehensive set of genes defining psoriasis at the molecular level and within the previously unidentified genes, a link to functional pathways associated with metabolic diseases/diabetes and to cardiovascular risk pathways is identified. In addition, we profiled the serum of moderate-to-severe psoriatics compared with healthy controls to assess the overlap of overexpressed lesional genes with overexpressed systemic proteins. We identified linkage of functional pathways in lesional skin associated with metabolic diseases/diabetes and cardiovascular risk with those pathways overexpressed in the serum, suggesting a potential linkage between altered gene transcription in the skin and comorbidities commonly seen in patients with moderate-to-severe psoriasis.


Journal of Experimental Medicine | 2009

Decreased TNF-α synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging

Elaine Agius; Katie E. Lacy; Milica Vukmanovic-Stejic; Ann Jagger; Anna-Pia Papageorgiou; Susan M Hall; John R. Reed; S. John Curnow; Judilyn Fuentes-Duculan; Christopher D. Buckley; Mike Salmon; Leonie S. Taams; James M. Krueger; John Greenwood; Nigel Klein; Malcolm H.A. Rustin; Arne N. Akbar

Immunity declines during aging, however the mechanisms involved in this decline are not known. In this study, we show that cutaneous delayed type hypersensitivity (DTH) responses to recall antigens are significantly decreased in older individuals. However, this is not related to CC chemokine receptor 4, cutaneous lymphocyte-associated antigen, or CD11a expression by CD4+ T cells or their physical capacity for migration. Instead, there is defective activation of dermal blood vessels in older subject that results from decreased TNF-α secretion by macrophages. This prevents memory T cell entry into the skin after antigen challenge. However, isolated cutaneous macrophages from these subjects can be induced to secrete TNF-α after stimulation with Toll-like receptor (TLR) 1/2 or TLR 4 ligands in vitro, indicating that the defect is reversible. The decreased conditioning of tissue microenvironments by macrophage-derived cytokines may therefore lead to defective immunosurveillance by memory T cells. This may be a predisposing factor for the development of malignancy and infection in the skin during aging.


PLOS ONE | 2011

Th17 cells and activated dendritic cells are increased in vitiligo lesions.

Claire Q.F. Wang; Andres E. Cruz-Inigo; Judilyn Fuentes-Duculan; Dariush Moussai; Nicholas Gulati; Mary Sullivan-Whalen; Patricia Gilleaudeau; Jules Cohen; James G. Krueger

Background Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis. Methodology/Principal Findings In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo. Conclusions/Significance These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses.

Collaboration


Dive into the Judilyn Fuentes-Duculan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayte Suárez-Fariñas

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Emma Guttman-Yassky

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Lowes

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Cueto

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge