Judit M. Pap
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judit M. Pap.
Archive | 1994
Judit M. Pap; Claus Frohlich; Hugh S. Hudson; W. Kent Tobiska
Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earths Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.
Solar Physics | 1995
Claus Frohlich; J. Romero; Hansjörg Roth; Christoph Wehrli; Bo Nyborg Andersen; T. Appourchaux; Vicente Domingo; Udo Telljohann; G. Berthomieu; Philippe Delache; J. Provost; Thierry Toutain; Dominique A. Crommelynck; André Chevalier; Alain Fichot; Werner Dappen; D. O. Gough; Todd Hoeksema; A. Jiménez; Maria F. Gómez; J. M. Herreros; Teodoro Roca Cortes; Andrew Jones; Judit M. Pap; Richard C. Willson
The scientific objective of the VIRGO experiment (Variability of solar IRradiance and Gravity Oscillations) is to determine the characteristics of pressure and internal gravity oscillations by observing irradiance and radiance variations, to measure the solar total and spectral irradiance and to quantify their variability over periods of days to the duration of the mission. With these data helioseismological methods can be used to probe the solar interior. Certain characteristics of convection and its interaction with magnetic fields, related to, for example, activity, will be studied from the results of the irradiance monitoring and from the comparison of amplitudes and phases of the oscillations as manifest in brightness from VIRGO, in velocity from GOLF, and in both velocity and continuum intensity from SOI/MDI. The VIRGO experiment contains two different active-cavity radiometers for monitoring the solar ‘constant‘, two three-channel sunphotometers (SPM) for the measurement of the spectral irradiance at 402, 500 and 862 nm, and a low-resolution imager (LOI) with 12 pixels, for the measurement of the radiance distribution over the solar disk at 500 nm. In this paper the scientific objectives of VIRGO are presented, the instruments and the data acquisition and control system are described in detail, and their measured performance is given.
The Astrophysical Journal | 2002
Michael J. Turmon; Judit M. Pap; Saleem Mukhtar
This paper presents a new application of statistical methods for identifying the various surface structures on the Sun that may contribute to observed changes in total and spectral solar irradiance. These structures are divided for our purposes into three types: quiet Sun, faculae, and sunspots (umbra and penumbra). Each region type is characterized by the observed data present at pixels of that type. Statistical models characterizing these observables are found from expert identification of a sample set of regions or unsupervised clustering. Information about the spatial continuity of regions is incorporated into the model via a prior distribution on the label image; the contribution of the prior can be interpreted as a regularizing term. Once the parameters defining the models are fixed, the inference procedure becomes to maximize the probability of an image labeling given the observed data. This allows objective and automated classification of a large set of images. We describe the application of these procedures to computing labelings from synchronized full-disk high-resolution magnetic-field and light-intensity maps from the Michelson Doppler Imager experiment on the Solar and Heliospheric Observatory.
Solar Physics | 1994
Claus Frohlich; Judit M. Pap; Hugh S. Hudson
The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in theSolar-Geophysical Data catalogue. It has been shown that the formerPSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improvedPSI calculation is presented; it takes into account the area dependence of the contrast and calculates ’true’ daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculatedPSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a ‘calibration’ ofPSI in terms of gain, the factor by whichPSI has to be multiplied to yield the observed irradiance change. This factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.
Advances in Space Research | 2002
D. L. Judge; H. S. Ogawa; Donald R. McMullin; Pradip Gangopadhyay; Judit M. Pap
Abstract The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.
Astronomy and Astrophysics | 2001
Judit M. Pap; J. P. Rozelot; S. Godier; F. Varadi
We use Singular Spectrum Analysis (SSA) to analyze total solar irradiance variations and CERGA radius measurements. Total solar irradiance has been monitored from space for more than two decades, whilst ground-based radius measurements are available as a coherent time series from 1975. We compare these indicators to try to understand the origin of energy production inside the Sun. One of the main objectives was to assess the reality of the observed variations of the Suns radius by distinguishing the signal from the noise. Two approaches were used: one using SSA on ground-based data averaged over 90 days, in order to smooth the signal (especially over periods when no data were obtained, mainly in winter time); the second repeats the analysis on individual measurements corrected by reporting data to the zenith. As expected, the level of noise is higher in the first case and the reconstructed noise level, which is large, indicates the difficulty in ascertaining the solar origin in the apparent variability of the solar radius. It is shown from the reconstructed components that the main variation in amplitude (over 930 days) is pronounced during the first part of the measurements and seems to disappear after 1988. There is also a variation with a periodicity of 1380 days, of lower amplitude than that of the shorter component. In both cases, these variations disappear during the rising portion of cycle 23. The first reconstructed component shows that total irradiance varies in parallel with the solar cycle, being higher during maximum activity conditions. The reconstructed radius trend indicates that the solar radius was higher during the minimum of solar cycle 21, but its decrease with the rising activity of cycle 23 is less obvious. The observed value of the solar radius increased by about 0.11 arcsec from the maximum of cycle 21 to the minimum between cycles 21 and 22. Most importantly, we report a long-term radius variation which increased from the maximum of cycle 21 to minimum by about 0.015% , while a smaller decrease (around 0.01% ) is seen from the minimum of cycle 21 to the maximum of cycle 22. This study indicates need for measurements of the degree of the radius changes taken from space, together with total irradiance measurements to establish the phase relation between these two quantities.
The Astrophysical Journal | 1999
Ferenc Varadi; Judit M. Pap; Roger K. Ulrich; Luca Bertello; C. J. Henney
Singular spectrum analysis, a technique to detect oscillations in short and noisy time series, was first developed for geophysical applications. This work offers a generalization for long and noisy time series in astrophysical applications. The motivating problem is the detection of low-amplitude solar oscillations.
Journal of Atmospheric and Solar-Terrestrial Physics | 2001
Marcel Fligge; S. K. Solanki; Judit M. Pap; Claus Frohlich; Ch. Wehrli
Abstract Solar spectral irradiance variations are known to exhibit a strong wavelength dependence with the amount of variability increasing towards shorter wavelengths. The bulk of solar radiation is emitted at visible and infrared wavelengths. Thus, the spectral radiation length of 300 nm accounts for 99% of the total solar radiative output. Deposited in the Earths troposphere and biosphere, this part of the solar irradiance spectrum determines direct solar radiative forcing and is therefore of particular interest for climate studies. First, measurements of solar irradiance and irradiance variability from near UV to the IR are reviewed with particular emphasis on the results obtained from the Variability of Irradiance and Gravity Oscillations (VIRGO) on SOHO and Solar Spectrum Measurement (SOLSPEC) instruments. In the second part a model is presented which describes solar spectral irradiance variations in terms of the changing distribution of solar surface magnetic features.
Solar Physics | 1996
R. Kariyappa; Judit M. Pap
We have digitized the Ca ii K spectroheliograms, observed at the National Solar Observatory at Sacramento Peak, for the period 1980 (maximum of solar cycle 21), 1985 (minimum of solar cycle 21), 1987 (beginning of the ascending phase of solar cycle 22), 1988 and 1989 (ascending phase and maximum of solar cycle 22), and 1992 (declining phase of solar cycle 22). A new method for analyzing the K spectroheliograms has been developed and applied to the K images for the time interval of 1992. Using histograms of intensity, we have segregated and measured the cumulative intensity and area of various chromospheric features like the plages, magnetic network and intranetwork elements. Also, the full width at half maximum (FWHM) derived from the histograms has been introduced as a new index for describing the chromospheric activity in the K-line. The full-disk intensity (spatial K index) has been derived from spatially-resolved K images and compared to the spectral K index derived from the line profiles for the full disk. Both the spatial K index and FWHM have been compared to the UV irradiance measured in the Mg ii h and k lines by the NOAA9 satellite and found that they are highly correlated with the Mg ii h and k c/w ratio.
Advances in Space Research | 2002
Judit M. Pap; M. Turmon; L. Floyd; Claus Frohlich; Ch. Wehrli
Abstract Total solar and UV irradiances have been measured from various space platforms for more than two decades. More recently, observations of the “Variability of solar IRradiance and Gravity Oscillations” (VIRGO) experiment on SOHO provided information about spectral irradiance variations in the near-UV at 402 nm, visible at 500 nm, and near-IR at 862 nm. Analyses based on these space-borne irradiance measurements have convinced the skeptics that solar irradiance at various wavelengths and in the entire spectrum is changing with the waxing and waning solar activity. The main goal of this paper is to review the short- and long-term variations in total solar and spectral irradiances and their relation to the evolution of magnetic fields from solar cycles 21 to 23.