Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judit Remenyi is active.

Publication


Featured researches published by Judit Remenyi.


Genome Medicine | 2010

Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes

Iain J. Gallagher; Camilla Scheele; Pernille Keller; Anders Rinnov Nielsen; Judit Remenyi; Christian P. Fischer; Karim Roder; John A. Babraj; Claes Wahlestedt; Gyorgy Hutvagner; Bente Klarlund Pedersen; James A. Timmons

BackgroundSkeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers.MethodsWe profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes.ResultsThe muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation.ConclusionsWe provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions.


Biochemical Journal | 2010

Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins.

Judit Remenyi; Christopher J. Hunter; Christian Cole; Hideaki Ando; Soren Impey; Claire E. Monk; Kirsty J. Martin; Geoffrey J. Barton; Gyorgy Hutvagner; J. Simon C. Arthur

Neurotrophins are growth factors that are important in neuronal development and survival as well as synapse formation and plasticity. Many of the effects of neurotrophins are mediated by changes in protein expression as a result of altered transcription or translation. To determine whether neurotrophins regulate the production of microRNAs (miRNAs), small RNA species that modulate protein translation or mRNA stability, we used deep sequencing to identify BDNF (brain-derived neurotrophic factor)-induced miRNAs in cultured primary cortical mouse neurons. This revealed that the miR-212/132 cluster contained the miRNAs most responsive to BDNF treatment. This cluster was found to produce four miRNAs: miR-132, miR-132*, miR-212 and miR-212*. Using specific inhibitors, mouse models and promoter analysis we have shown that the regulation of the transcription of the miR-212/132 miRNA cluster and the miRNAs derived from it are regulated by the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, via both MSK (mitogen and stress-activated kinase)-dependent and -independent mechanisms.


PLOS ONE | 2013

miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

Judit Remenyi; Mirjam W. M. Van Den Bosch; Oleg Palygin; Rajen B. Mistry; Colin McKenzie; Andrew Macdonald; Gyorgy Hutvagner; J. Simon C. Arthur; Bruno G. Frenguelli; Yuriy Pankratov

miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.


Cell Reports | 2015

APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer

Manikandan Periyasamy; Hetal Patel; Chun-Fui Lai; Van T. M. Nguyen; Ekaterina Nevedomskaya; Alison Harrod; Roslin Russell; Judit Remenyi; Anna-Maria Ochocka; Ross S. Thomas; Frances V. Fuller-Pace; Balázs Győrffy; Carlos Caldas; Naveenan Navaratnam; Jason S. Carroll; Wilbert Zwart; R. Charles Coombes; Luca Magnani; Laki Buluwela; Simak Ali

Summary Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.


PLOS ONE | 2012

Polypyrimidine tract binding protein (hnRNP I) is possibly a conserved modulator of miRNA-mediated gene regulation.

Bart Engels; Guillaume Jannot; Judit Remenyi; Martin Simard; Gyorgy Hutvagner

MiRNAs can regulate gene expression through versatile mechanisms that result in increased or decreased expression of the targeted mRNA and it could effect the expression of thousands of protein in a particular cell. An increasing body of evidence suggest that miRNAs action can be modulated by proteins that bind to the same 3′UTRs that are targeted by miRNAs, suggesting that other factors apart from miRNAs and their target sites determine miRNA-modulation of gene expression. We applied an affinity purification protocol using biotinylated let-7 miRNA inhibitor to isolate proteins that are involved in let-7 mediated gene regulation that resulted in an affinity purification of Polypyrimidine Tract Binding protein (PTB). Here we show that PTB interacts with miRNAs and human Argonaute 2 (hAgo2) through RNA as well as identified potential mammalian cellular targets that are co-regulated by PTB and hAgo2. In addition, using genetic approach, we have demonstrated that PTB genetically interacts with Caenorhabditis elegans let-7 indicating a conserved role for PTB in miRNA-mediated gene regulation.


eLife | 2016

TP53 drives invasion through expression of its Δ133p53β variant

Gilles Gadea; Nikola Arsic; Kenneth Fernandes; Alexandra Diot; S�bastien M. Joruiz; Samer Abdallah; Valerie Meuray; St�phanie Vinot; Christelle Anguille; Judit Remenyi; Marie P. Khoury; Philip R. Quinlan; Colin A. Purdie; Lee Jordan; Frances V. Fuller-Pace; Marion De Toledo; Ma�lys Cren; Alastair M. Thompson; Jean-Christophe Bourdon; Pierre Roux

TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression. DOI: http://dx.doi.org/10.7554/eLife.14734.001


Clinical Cancer Research | 2016

Expression of CDK7, Cyclin H, and MAT1 Is Elevated in Breast Cancer and Is Prognostic in Estrogen Receptor-Positive Breast Cancer.

Hetal Patel; Rezvan Abduljabbar; Chun Fui Lai; Manikandan Periyasamy; Alison Harrod; Carolina Gemma; Jennifer H. Steel; Naina Patel; Claudia Busonero; Dena A. Jerjees; Judit Remenyi; Sally Smith; Jennifer J. Gomm; Luca Magnani; Balazs Gyorffy; Louise Jones; Frances V. Fuller-Pace; Sami Shousha; Laki Buluwela; Emad A. Rakha; Ian O. Ellis; R. Charles Coombes; Simak Ali

Purpose: CDK-activating kinase (CAK) is required for the regulation of the cell cycle and is a trimeric complex consisting of cyclin-dependent kinase 7 (CDK7), Cyclin H, and the accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, primarily by phosphorylating RNA polymerase II, as well as transcription factors such as estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors as novel cancer therapeutics. Experimental Design: mRNA and protein expression of CDK7 and its essential cofactors cyclin H and MAT1 were evaluated in breast cancer samples to determine if their levels are altered in cancer. Immunohistochemical staining of >900 breast cancers was used to determine the association with clinicopathologic features and patient outcome. Results: We show that expressions of CDK7, cyclin H, and MAT1 are all closely linked at the mRNA and protein level, and their expression is elevated in breast cancer compared with the normal breast tissue. Intriguingly, CDK7 expression was inversely proportional to tumor grade and size, and outcome analysis showed an association between CAK levels and better outcome. Moreover, CDK7 expression was positively associated with ER expression and in particular with phosphorylation of ER at serine 118, a site important for ER transcriptional activity. Conclusions: Expressions of components of the CAK complex, CDK7, MAT1, and Cyclin H are elevated in breast cancer and correlate with ER. Like ER, CDK7 expression is inversely proportional to poor prognostic factors and survival. Clin Cancer Res; 22(23); 5929–38. ©2016 AACR.


Scientific Reports | 2016

The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132.

Judit Remenyi; Sarah Bajan; Frances V. Fuller-Pace; Arthur Js; Gyorgy Hutvagner

miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132.


Biochimica et Biophysica Acta | 2016

The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells.

Patrick Connerty; Sarah Bajan; Judit Remenyi; Frances V. Fuller-Pace; Gyorgy Hutvagner

MicroRNAs (miRNAs) are short (21-23nt long) RNAs that post-transcriptionally regulate gene expression in plants and animals. They are key regulators in all biological processes. In mammalian cells miRNAs are loaded into one of the four members of the Argonaute (Ago) protein family to form the RNA-induced silencing complex (RISC). RISCs inhibit the translation of mRNAs that share sequence complementarity with their loaded miRNAs. miRNA processing and miRNA-mediated gene regulation are highly regulated processes and involve many RNA-binding proteins as auxiliary factors. Here we show that the two RNA-binding proteins, p72 and KHSRP, both with known roles in promoting miRNA biogenesis, regulate the protein level of human Ago2 in transformed human cells. We determined that p72 and KHSRP influence Ago2 stability by regulating miRNA levels in the cell and that loss of p72/KHSRP results in a decrease of unloaded Ago2.


FEBS Open Bio | 2017

MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins

Christopher J. Hunter; Judit Remenyi; Sônia A. L. Corrêa; Lucia Privitera; Kathleen M. S. E. Reyskens; Kirsty J. Martin; Rachel Toth; Bruno G. Frenguelli; J. Simon C. Arthur

The immediate early gene activity‐regulated cytoskeletal protein (Arc)/Arg3.1 and the neurotrophin brain‐derived neurotrophic factor (BDNF) play important roles in synaptic plasticity and learning and memory in the mammalian brain. However, the mechanisms by which BDNF regulates the expression of Arc/Arg3.1 are unclear. In this study, we show that BDNF acts via the ERK1/2 pathway to activate the nuclear kinase mitogen‐ and stress‐activated protein kinase 1 (MSK1). MSK1 then induces Arc/Arg3.1 expression via the phosphorylation of histone H3 at the Arc/Arg3.1 promoter. MSK1 can also phosphorylate the transcription factor cyclic‐AMP response element‐binding protein (CREB) on Ser133. However, this is not required for BDNF‐induced Arc.Arg3.1 transcription as a Ser133Ala knockin mutation had no effect on Arc/Arg3.1 induction. In parallel, ERK1/2 directly activates Arc/Arg3.1 mRNA transcription via at least one serum response element on the promoter, which bind a complex of the Serum Response Factor (SRF) and a Ternary Complex Factor (TCF).

Collaboration


Dive into the Judit Remenyi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hetal Patel

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simak Ali

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge