Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judit Tenk is active.

Publication


Featured researches published by Judit Tenk.


Peptides | 2014

Age versus nutritional state in the development of central leptin resistance.

Erika Pétervári; Ildikó Rostás; Szilvia Soós; Judit Tenk; Alexandra Mikó; Nóra Füredi; Miklós Székely; Márta Balaskó

Leptin, a catabolic adiposity signal acts in the hypothalamus via suppressing food intake and inducing hypermetabolism. Age and obesity are accompanied by leptin resistance. The present study aimed to clarify which components of the catabolic leptin effects are influenced most strongly by aging and which ones by nutritional state-induced alterations in body composition. In our biotelemetric study the effects of a 7-day intracerebroventricular leptin infusion on various parameters of energy balance (food intake, body weight, oxygen consumption, heart rate and body temperature) were analyzed in male Wistar rats of different age-groups (from 3 to 24 months) and nutritional states (normally fed, diet-induced obese and calorie-restricted). Leptin resistance of older animals affected hypermetabolic actions, whereas leptin induced anorexia in all age-groups. Weight reducing effect of leptin diminished in middle-aged and aging animals to become significant again in the oldest group. In diet-induced obese rats leptin-induced hypermetabolism of the young rats and hypermetabolism plus anorexia of the aging ones were suppressed. Calorie-restriction reduced body weight and fat mass to a similar extent in all age-groups. It strongly enhanced leptin-induced hypermetabolism at all ages and prevented the manifestation of anorexigenic actions of leptin with the exception of the oldest group. This latter finding suggests an unexpected increase of responsiveness to anorexigenic leptin actions in old rats. Accordingly, anorexia and hypermetabolism change in disparate ways with aging. Nutritional state predominantly influences hypermetabolic leptin actions. Resistance to both hypermetabolic and anorexigenic actions were promoted by obesity, while calorie-restriction enhanced responsiveness to leptin, especially in old rats.


Experimental Gerontology | 2013

Age and nutritional state influence the effects of cholecystokinin on energy balance.

Márta Balaskó; Ildikó Rostás; Nóra Füredi; Alexandra Mikó; Judit Tenk; P. Cséplő; M. Koncsecskó-Gáspár; Szilvia Soós; Miklós Székely; Erika Pétervári

Cholecystokinin (CCK) is anorexic, irrespective whether it is applied intraperitoneally (IP) or intracerebroventricularly (ICV) in male Wistar rats. The metabolic effects depend on the route of administration: by the IP route it elicits hypothermia (presumably by type-1 receptors, CCK1R-s), while ICV administration is followed by fever-like hypermetabolism and hyperthermia via activation of CCK2R-s, which latter response seems to be most important in the postprandial (compensatory) hypermetabolism. The efficacy of the IP injected CCK varies with age: it causes strong anorexia in young adult 4 and 6-months old and again in old rats (aged 18-24 months), but the middle-aged (12-month old) ones seem to be resistant to this effect. Such pattern of effects may contribute to the explanation of age-related obesity observed in middle-aged animals as well as to the aging anorexia and loss of body weight in old ones. Diet-induced obesity accelerates the appearance of CCK-resistance as well as the return of high sensitivity to CCK in further aging, while chronic calorie-restriction prevents the development of resistance, as if the speed of the age-related regulatory changes was altered by the nutritional state. The effects of ICV applied CCK also change with age: the characteristic anorexic and hypermetabolic/hyperthermic effects can be observed in young adult rats, but the effects gradually and monotonically decline with age and disappear by the old age of 24 months. These disparate age-related patterns of CCK efficacy upon peripheral or central administration routes may indicate that although both peripheral and central CCKR-s exert anorexic effects, they may have dissimilar roles in the regulation of overall energy balance.


Critical Reviews in Food Science and Nutrition | 2018

Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies

Csaba Zsiborás; Róbert Mátics; Péter Hegyi; Márta Balaskó; Erika Pétervári; Imre Szabó; Patrícia Sarlós; Alexandra Mikó; Judit Tenk; Ildikó Rostás; Dániel Pécsi; András Garami; Zoltán Rumbus; Orsolya Huszár; Margit Solymár

ABSTRACT Consumption of capsaicin or its nonpungent analogues, capsinoids has been reported to affect energy expenditure and fat oxidation, although available data are still controversial. The aim of the present study was to conduct a meta-analysis regarding the effects of these substances on energy expenditure and respiratory quotient, with special emphasis on the role of body mass index (BMI) of the participants. Medical databases were systematically searched for papers. Of the 627 trials identified, 9 provided results suitable to be included in analysis. Data analysis showed that after ingestion of capsaicin or capsinoids the energy expenditure increased (245 kJ/day, 58.56 kcal/day, p = 0.030) and the respiratory quotient decreased (by 0.216; p = 0.031) indicating a rise in fat oxidation. Studies with mean BMI of the participants below 25 kg/m2 failed to report any effect of capsaicin or capsinoids on the energy expenditure (p = 0.718) or on the respiratory quotient (p = 0.444), but studies with mean BMI exceeding 25 kg/m2 demonstrated an increase in energy expenditure (292 kJ/day, 69.79 kcal/day, p = 0.023) and a marked decrease in respiratory quotient (−0.257, p = 0.036). Our data clearly suggest that capsaicin or capsiate could be a new therapeutic approach in obesity promoting a negative energy balance and increased fat oxidation.


Journal of Thermal Biology | 2015

Age-related alterations in the central thermoregulatory responsiveness to alpha-MSH

Ildikó Rostás; Nóra Füredi; Judit Tenk; Alexandra Mikó; Margit Solymár; Szilvia Soós; Miklós Székely; Erika Pétervári; Márta Balaskó

Alpha-melanocyte-stimulating-hormone (alpha-MSH) is a neuropeptide that induces weight loss via its anorexigenic and hypermetabolic/hyperthermic effects. Two major public health problems of the human population involving energy balance (i.e. middle-aged obesity and aging cachexia) also appear in other mammals, therefore age-related regulatory alterations may also be assumed in the background. Previous studies demonstrated characteristic age-related shifts in the anorexigenic effects of centrally applied alpha-MSH with strong effects in young adult, diminished efficacy in middle-aged and very pronounced responsiveness in old rats. The present study aimed to investigate age-related changes in the acute central thermoregulatory responsiveness to an alpha-MSH injection in rats and to compare them with those of food intake-related responsiveness. Oxygen consumption (VO2), core (Tc) and tail skin temperatures (Ts, indicating heat loss) of male Wistar rats of different age groups (from 2 to 24 months of age), were recorded in an indirect calorimeter complemented by thermocouples upon intracerebroventricular alpha-MSH administration (0, 5 µg) at a slightly subthermoneutral environment (25-26 °C). Acute alpha-MSH-induced rises in VO2 and Tc were most pronounced in the young adult age-group. In these rats the hyperthemic effects were somewhat diminished by an activation of heat loss. Juvenile animals showed weaker hyperthermic responses, middle-aged rats none at all. Alpha-MSH-induced hyperthermia became significant again in old rats. Acute thermoregulatory (hypermetabolic/hyperthermic) responsiveness to alpha-MSH shows a distinct age-related pattern similar to that of acute anorexigenic responsiveness. Thus, our results may also contribute to the explanation of both middle-aged obesity and aging cachexia.


PLOS ONE | 2017

Fever is associated with reduced, hypothermia with increased mortality in septic patients: A meta-analysis of clinical trials

Zoltán Rumbus; Róbert Mátics; Péter Hegyi; Csaba Zsiborás; Imre Szabó; Anita Illés; Erika Pétervári; Márta Balaskó; Katalin Márta; Alexandra Mikó; Andrea Párniczky; Judit Tenk; Ildikó Rostás; Margit Solymár; András Garami

Background Sepsis is usually accompanied by changes of body temperature (Tb), but whether fever and hypothermia predict mortality equally or differently is not fully clarified. We aimed to find an association between Tb and mortality in septic patients with meta-analysis of clinical trials. Methods We searched the PubMed, EMBASE, and Cochrane Controlled Trials Registry databases (from inception to February 2016). Human studies reporting Tb and mortality of patients with sepsis were included in the analyses. Average Tb with SEM and mortality rate of septic patient groups were extracted by two authors independently. Results Forty-two studies reported Tb and mortality ratios in septic patients (n = 10,834). Pearson correlation analysis revealed weak negative linear correlation (R2 = 0.2794) between Tb and mortality. With forest plot analysis, we found a 22.2% (CI, 19.2–25.5) mortality rate in septic patients with fever (Tb > 38.0°C), which was higher, 31.2% (CI, 25.7–37.3), in normothermic patients, and it was the highest, 47.3% (CI, 38.9–55.7), in hypothermic patients (Tb < 36.0°C). Meta-regression analysis showed strong negative linear correlation between Tb and mortality rate (regression coefficient: -0.4318; P < 0.001). Mean Tb of the patients was higher in the lowest mortality quartile than in the highest: 38.1°C (CI, 37.9–38.4) vs 37.1°C (CI, 36.7–37.4). Conclusions Deep Tb shows negative correlation with the clinical outcome in sepsis. Fever predicts lower, while hypothermia higher mortality rates compared with normal Tb. Septic patients with the lowest (< 25%) chance of mortality have higher Tb than those with the highest chance (> 75%).


Experimental Gerontology | 2016

Age-related changes in acute central leptin effects on energy balance are promoted by obesity

Ildikó Rostás; Judit Tenk; Alexandra Mikó; Nóra Füredi; Szilvia Soós; Margit Solymár; A. Lengyel; Miklós Székely; Balázs Gaszner; Diana Feller; Erika Pétervári; Márta Balaskó

Leptin is a key catabolic regulator of food intake (FI) and energy expenditure. Both aging and obesity have been shown to induce leptin-resistance. The present study aimed to analyze age-related changes in the anorexigenic and hypermetabolic responsiveness to acute intracerebroventricular leptin administration in different age-groups of normally fed male Wistar rats (adult and old rats from 3 to 24months of age, NF3 to NF24, respectively). The expressions of the long form of the leptin receptor (Ob-Rb) and inhibitory SOCS3 genes were also assessed by quantitative RT-PCR in the arcuate nucleus (ARC). The influence of high-fat diet-induced obesity (HF) on the anorexigenic leptin effects were also tested in younger and older middle-aged groups (HF6 and HF12). Leptin-induced anorexia varied with age: leptin suppressed re-feeding FI (following 48-h fasting) strongly in young adult (NF3), but not in younger or older middle-aged (NF6 or NF12) or in aging (NF18) rats. However, anorexigenic leptin effects reached statistical significance again in old NF24 rats. Leptin-induced hypermetabolism, on the other hand, showed monotonous age-related decline and disappeared by old age. Ob-Rb expression declined until 12months of age followed by a partial recovery in NF18 and NF24 groups. On the other hand, SOCS3 expression was high in NF6 and NF18 and to some extent in NF24 rats. Age-related alterations of Ob-Rb and SOCS3 expression in the ARC may partly contribute to the explanation of age-related variations in anorexigenic but not hypermetabolic leptin effects. High-fat diet-induced obesity was associated with resistance to leptin-induced anorexia in HF6, similar to that seen in NF6. However, instead of the expected leptin-resistance in HF12, a strong leptin-induced suppression of re-feeding was detected in these obese middle-aged rats. Our results suggest that acute central effects of leptin on anorexia and hypermetabolism change in disparate ways during aging, implying separate mechanisms (e.g. signal transduction pathways) of different leptin actions. The age-related pattern shown by leptin-induced anorexia may contribute to the explanation of middle-aged obesity, and partly to that of aging anorexia. Our findings concerning obese rats are in accord with previous observations on anorexigenic effects of peripherally administered cholecystokinin: diet-induced obesity appeared to accelerate the development of age-related regulatory alterations. Similarly, our present data also raise the possibility that chronic diet-induced obesity promotes responsiveness to centrally applied leptin at least concerning anorexigenic effects.


Temperature (Austin, Tex.) | 2014

Thermoregulatory effect of alarin, a new member of the galanin peptide family

Alexandra Mikó; Péter Balla; Judit Tenk; Márta Balaskó; Szilvia Soós; Miklós Székely; Susanne Brunner; Barbara Kofler; Erika Pétervári

In the background of obesity, among other factors, regulatory alterations in energy balance affecting peptide systems may also be assumed. Regulation of energy balance does not only involve maintenance of body weight but also that of metabolic rate and core temperature. The contribution of alarin, a new member of the potentially orexigenic galanin peptide family, to the regulation of energy metabolism has been recently suggested. Our aim was to analyze the thermoregulatory effects of alarin in rats. Adult male Wistar rats received full-length alarin (alarin 1–25), its truncated form (alarin 6–25Cys) or scrambled alarin in various doses intracerebroventricularly at different ambient temperatures. Oxygen consumption, heat loss (assessed by tail skin temperature) and core temperature of rats were recorded in an indirect calorimeter system. Upon alarin injection at 25 °C, an increase in oxygen consumption and continuous tail skin vasoconstriction induced a slow rise in core temperature that reached 0.5 °C by 120 and 1.0 °C by 180 min. At cooler or slightly warmer temperatures similar responses were seen. Neither the truncated nor the scrambled alarin elicited any significant thermoregulatory response, however, the truncated form antagonized the hyperthermic actions of the full-length peptide. Alarin appears to elicit a slow hypermetabolic, hyperthermic response in rats. Such a thermoregulatory response would characterize a catabolic (anorexic and hypermetabolic) mediator. Further investigations are needed to clarify the complex role of alarin in energy homeostasis.


Journal of Molecular Neuroscience | 2016

Regulatory Alterations of Energy Homeostasis in Spontaneously Hypertensive Rats (SHR).

Nóra Füredi; Alexandra Mikó; Bianka Aubrecht; Balázs Gaszner; Diana Feller; Ildikó Rostás; Judit Tenk; Szilvia Soós; Márta Balaskó; András Balogh; Marianna Pap; Erika Pétervári

Spontaneously hypertensive rats (SHR) have high sympathetic tone and progressive hypertension. Chronic calorie-restriction prevents hypertension. Their food intake (FI) and body weight are lower than in normotensive (NT) controls, even on a high-fat diet, suggesting a dysregulation of energy homeostasis. We assumed enhanced activity of hypothalamic anorexigenic melanocortins and diminished tone of orexigenic neuropeptide Y (NPY) in the background. FI of male SHR and NT Wistar rats was recorded in a FeedScale system upon intracerebroventricular injection of NPY, melanocortin ligands alpha-melanocyte-stimulating hormone (alpha-MSH), and agouti-related peptide (AgRP) or during a 7-day intracerebroventricular infusion of melanocortin antagonist HS024. Alpha-MSH, NPY, and AgRP immunoreactivities were semi-quantified in the arcuate (ARC) and paraventricular (PVN) nuclei of the hypothalamus in NT vs. SHR. Proopiomelanocortin gene expression was also assessed by quantitative RT-PCR in the ARC. Melanocortin-induced anorexia was stronger, FI induced by NPY or HS024 was smaller and delayed in SHR. Cellular alpha-MSH-specific signal density was higher in the ARC of SHR as evaluated by immunofluerescence, which was supported by PCR data. In the PVN, no differences in alpha-MSH-, NPY-, or AgRP-immunosignal were observed. Our results suggest that a higher melanocortin production/responsiveness and lower NPY responsiveness may contribute to the body weight dysregulation of SHR.


PLOS ONE | 2017

In middle-aged and old obese patients, training intervention reduces leptin level: A meta-analysis.

Ildikó Rostás; László Pótó; Péter Mátrai; Péter Hegyi; Judit Tenk; András Garami; Anita Illés; Margit Solymár; Erika Pétervári; Ákos Szűcs; Andrea Párniczky; Dániel Pécsi; Zoltán Rumbus; Csaba Zsiborás; Nóra Füredi; Márta Balaskó

Background Leptin is one of the major adipokines in obesity that indicates the severity of fat accumulation. It is also an important etiological factor of consequent cardiometabolic and autoimmune disorders. Aging has been demonstrated to aggravate obesity and to induce leptin resistance and hyperleptinemia. Hyperleptinemia, on the other hand, may promote the development of age-related abnormalities. While major weight loss has been demonstrated to ameliorate hyperleptinemia, obese people show a poor tendency to achieve lasting success in this field. The question arises whether training intervention per se is able to reduce the level of this adipokine. Objectives We aimed to review the literature on the effects of training intervention on peripheral leptin level in obesity during aging, in order to evaluate the independent efficacy of this method. In the studies that were included in our analysis, changes of adiponectin levels (when present) were also evaluated. Data sources 3481 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 19 articles were suitable for analyses. Study eligibility criteria Empirical research papers were eligible provided that they reported data of middle-aged or older (above 45 years of age) overweight or obese (body mass index above 25) individuals and included physical training intervention or at least fitness status of groups together with corresponding blood leptin values. Statistical methods We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. To assess publication bias Egger’s test was applied. In case of significant publication bias, the Duval and Tweedies trim and fill algorithm was used. Results Training intervention leads to a decrease in leptin level of middle-aged or older, overweight or obese male and female groups, even without major weight loss, indicated by unchanged serum adiponectin levels. Resistance training appears to be more efficient in reducing blood leptin level than aerobic training alone. Conclusions Physical training, especially resistance training successfully reduces hyperleptinemia even without diet or major weight loss.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2018

Activity of the Hypothalamic Melanocortin System Decreases in Middle-Aged and Increases in Old Rats

Nóra Füredi; Alexandra Mikó; Balázs Gaszner; Diana Feller; Ildikó Rostás; Judit Tenk; Margit Solymár; Márta Balaskó; Erika Pétervári

Appearance of middle-aged obesity and aging anorexia both in humans and rodents suggests a role for regulatory alterations. Hypothalamic melanocortin agonist, α-melanocyte-stimulating hormone (α-MSH) produced in the arcuate nucleus (ARC), reduces body weight via inducing hypermetabolism and anorexia mainly through melanocortin 4 receptors (MC4Rs) in the paraventricular nucleus (PVN). Orexigenic ARC-derived agouti-related protein (AgRP) is an inverse agonist on MC4R in the PVN. Previously, we demonstrated that characteristic age-related shifts in the catabolic effects of α-MSH may contribute both to middle-aged obesity and aging anorexia. Responsiveness to α-MSH decreases in middle-aged rats compared with young adults, whereas in old age it rises again significantly. We hypothesized corresponding age-related dynamics of endogenous melanocortins. Therefore, we quantified mRNA gene expression and peptide or protein level of α-MSH, AgRP, and MC4R in the ARC and PVN of male Wistar rats of five age groups (from young to old). Immunofluorescence and quantitative reverse transcriptase polymerase chain reaction were applied. α-MSH and MC4R immunoreactivities in the ARC and PVN declined in middle-aged and increased together with their expressions in aging rats. AgRP gene expression but not its immunoreactivity increased in aging rats. Our results demonstrate that age-dependent changes of endogenous melanocortins contribute to middle-aged obesity and aging anorexia.

Collaboration


Dive into the Judit Tenk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge