Judith A. Dent
University of Arkansas for Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judith A. Dent.
Journal of Clinical Investigation | 1991
Judith A. Dent; Miriam Galbusera; Zaverio M. Ruggeri
In this report we demonstrate that proteolytic cleavage of the constituent subunit is one of the causes determining the heterogeneous size distribution of plasma von Willebrand factor (vWf) multimers. As shown by two-dimensional nonreduced/reduced agarose/polyacrylamide gel electrophoresis, the structure of circulating vWf molecules may deviate from that represented by assemblage of a variable number of identical subunits. Indeed, even though the largest multimers in normal plasma appear to be composed predominantly of intact 225-kD subunits, those of intermediate and smaller size contain also 189-, 176-, and 140-kD proteolytic fragments. Different subunit composition patterns are repeated regularly in multimers of increasing molecular mass, yielding series of bands with similar structure. One of these series consists of molecules without evidence of proteolytic fragmentation, and its smallest member appears to be a dimer of 225-kD subunits. Type IIA von Willebrand disease, characterized by absence of the largest multimers, displays a pattern wherein the fragments of 176 and 140 kD are relatively increased, that of 189 kD is markedly decreased or absent, but the composition of individual multimers is otherwise similar to that of species seen also in normal plasma. In contrast to those in the circulation, all normal platelet vWf multimers contain only intact subunit. These results suggest that proteolytic cleavage of plasma vWf subunits occurs after release from cellular sites, whereas platelet vWf stored in alpha-granules is protected from proteolysis. These findings provide information that may be relevant for understanding the normal processing of vWf multimers and for elucidating the pathogenesis of some of the congenital and acquired structural abnormalities of this molecule.
Journal of Clinical Investigation | 1986
Theodore S. Zimmerman; Judith A. Dent; Zaverio M. Ruggeri; L H Nannini
We have evaluated the subunit composition of plasma von Willebrand factor (vWF) and found evidence that cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease (vWD), but decreased or absent in variants with aberrant structure of individual oligomers. vWF was rapidly purified from plasma on an analytical scale by monoclonal antibody immunoaffinity chromatography in the presence of protease inhibitors. After reduction and electrophoresis in 5% polyacrylamide gels containing sodium dodecyl sulfate, fragments of 189, 176, and 140 kD, as well as the predominant 225-kD subunit, were identified in plasma vWF from 25 normal individuals. The vWF polypeptides were detected by immunoblotting with a mixture of 55 anti-vWF monoclonal antibodies followed by 125I-rabbit anti-mouse antibody and autoradiography. In five individuals with type IIA and five individuals with type IIB vWD, the proportions of 176 and 140-kD fragments were increased relative to the intact 225-kD subunit, as determined by excising each band and quantitating incorporated radioactivity. In contrast, these fragments were either not detectable or were present in only trace amounts in variants with abnormal structure of individual oligomers (types IIC and IID, and a new variant, type IIE vWD). The results reported here provide evidence that absence of large vWF multimers in these two groups of variants results from different mechanisms. In addition, they demonstrate that partial cleavage of the plasma vWF subunit is a normal event.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Shashank Jain; Masahiko Zuka; Jungling Liu; Susan Russell; Judith A. Dent; Jose A. Guerrero; Jane S. Forsyth; Brigid Maruszak; T. Kent Gartner; Jerry Ware
The platelet paradigm in hemostasis and thrombosis involves an initiation step that depends on platelet membrane receptors binding to ligands on a damaged or inflamed vascular surface. Once bound to the surface, platelets provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin-rich network produced by coagulation factors. The platelet-specific receptor glycoprotein (GP) Ib-IX, is critical in this process and initiates the formation of a platelet-rich thrombus by tethering the platelet to a thrombogenic surface. A role for platelets beyond the hemostasis/thrombosis paradigm is emerging with significant platelet contributions in both tumorigenesis and inflammation. We have established congenic (N10) mouse colonies (C57BL/6J) with dysfunctional GP Ib-IX receptors in our laboratory that allow us an opportunity to examine the relevance of platelet GP Ib-IX in syngeneic mouse models of experimental metastasis. Our results demonstrate platelet GP Ib-IX contributes to experimental metastasis because a functional absence of GP Ib-IX correlates with a 15-fold reduction in the number of lung metastatic foci using B16F10.1 melanoma cells. The results demonstrate that the extracellular domain of the α-subunit of GP Ib is the structurally relevant component of the GP Ib-IX complex contributing to metastasis. Our results support the hypothesis that platelet GP Ib-IX functions that support normal hemostasis or pathologic thrombosis also contribute to tumor malignancy.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Judith A. Dent; Kazunobu Kato; Xiao-Rong Peng; Constantino Martínez; Marco Cattaneo; Christel Poujol; Paquita Nurden; Alan T. Nurden; William S. Trimble; Jerry Ware
Studies are presented characterizing platelet CDCrel-1, a protein expressed to high levels by megakaryocytes and belonging to a family of conserved proteins, termed septin. Septin filaments originally were identified in yeast as essential for budding but have become increasingly associated with processes in higher eukaryotic cells involving active membrane movement such as cytokinesis and vesicle trafficking. Direct proof of an in vivo function for septins in higher eukaryotes is limited to the characterization of the Drosophila septin, termed PNUT. We present studies identifying platelet CDCrel-1 as a protein kinase substrate in the presence of known platelet agonists. The immunopurification of CDCrel-1 revealed it to be part of a macromolecular complex containing a protein involved in platelet secretion, syntaxin 4. Moreover, CDCrel-1 was localized in situ to areas surrounding platelet-storage granules. The relevance of CDCrel-1 to normal platelet function was established with the characterization of platelets from a CDCrel-1Null mouse. As compared with platelets from wild-type littermates, CDCrel-1Null platelets aggregate and release stored [14C]serotonin in the presence of subthreshold levels of collagen. These results provide new insights into the mechanisms regulating platelet secretion and identify platelet septins as a protein family contributing to membrane trafficking within the megakaryocyte and platelet.
Journal of Clinical Investigation | 1993
Lars Holmberg; Judith A. Dent; Reinhard Schneppenheim; Ulrich Budde; I Jerry Ware; Zaverio M. Ruggeri
Variant von Willebrand disease designated as type I New York or type Malmö is characterized by enhanced ristocetin-induced platelet agglutination with normal von Willebrand factor multimeric distribution in plasma. We have studied four such patients belonging to three unrelated families and found in all of them a unique cytosine-to-thymine transition changing the codon for Pro503 (CCG) to Leu (CTG). In three patients the mutant allele also had a silent mutation in the codon for Ser500 (TCG-->TCA). Both nucleotide changes are present in the von Willebrand factor pseudogene; however, the characterization of distinctive markers where the gene and pseudogene differ, as well as the examination of amplified cDNA derived from platelet mRNA, confirmed that the abnormality occurs in the von Willebrand factor gene of the patients. Moreover, recombinant expression of the isolated glycoprotein Ib-binding domain of von Willebrand factor provided direct evidence that the Pro503-->Leu mutation is responsible for enhanced platelet reactivity to lower ristocetin concentrations. These results define a new structural element affecting the affinity of von Willebrand factor for glycoprotein Ib and establish the molecular basis of a variant form of von Willebrand disease.
Biochemical Journal | 2004
Constantino Martínez; Miguel A. Sanjuan; Judith A. Dent; Lars Karlsson; Jerry Ware
Septins are a cytosolic GTP-binding protein family first characterized in yeast, but gaining increasing recognition as critical protagonists in higher eukaryotic cellular events. Mammalian septins have been associated with cytokinesis and exocytosis, along with contributing to the development of neurological disorders. Ten different septins, divided into four groups, have been identified in mammals, and individual septins are capable of interacting with each other to form macromolecular complexes. The present study characterizes the structural requirements for human septin-septin interactions using a yeast two-hybrid system. We focus on three septins that are highly expressed in platelets and neurons, SEPT4 [previously designated H5, CDCrel-2 (cell-division-control-related-2), PNUTL2], SEPT5 (CDCrel-1, PNUTL1) and SEPT8 (KIAA0202). Each of these three septins contains a characteristic domain structure consisting of unique N- and C-termini, and a central core domain conserved among the family of proteins. The yeast two-hybrid system yielded data consistent with a model where each of the three septins can interact with itself (homotypic assembly) or with one of the other septins (heterotypic assembly). For SEPT5 and SEPT8, the results illustrate a model whereby heterotypic septin assembly is dependent on the conserved central core domain and homotypic interactions require the N- and C-termini of each protein. We also characterized a model in which the proper cellular localization of SEPT5 and SEPT8 requires concomitant expression of both proteins. Co-transfection of SEPT5 and SEPT8 results in both proteins targeted to a vesicular-like location. Therefore the cellular repertoire of human septins has an impact on function by targeting septin macromolecular complexes to specific cellular locations.
Proceedings of the National Academy of Sciences of the United States of America | 1991
Jerry Ware; Judith A. Dent; Hiroyuki Azuma; Mitsuhiko Sugimoto; P.A. Kyrle; Akira Yoshioka; Zaverio M. Ruggeri
von Willebrand factor (vWF) supports platelet adhesion on thrombogenic surfaces by binding to platelet membrane glycoprotein (GP) Ib in the GP Ib-IX receptor complex. This interaction is physiologically regulated so that it does not occur between circulating vWF and platelets but, rather, only at a site of vascular injury. The abnormal vWF found in type IIB von Willebrand disease, however, has a characteristically increased affinity for GP Ib and binds to circulating platelets. We have analyzed the molecular basis of this abnormality by sequence analysis of a type IIB vWF cDNA and have identified a single amino acid change, Trp550 to Cys550, located in the GP Ib-binding domain of the molecule comprising residues 449-728. Bacterial expression of recombinant fragments corresponding to this vWF domain yielded molecules that, whether containing a normal Trp550 or a mutant Cys550 residue, bound directly to GP Ib in the absence of modulators and with similar affinity. In contrast, mammalian cell expression of the same segment of sequence yielded molecules that, when containing the normal Trp550, did not bind to GP Ib directly but, like native vWF, bound in the presence of ristocetin. However, molecules containing the point mutation (Cys550) behaved like type IIB vWF--namely, bound to GP Ib even without ristocetin modulation and, in the presence of ristocetin, had 10-fold higher affinity than molecules with normal sequence. These results identify a region of vWF that, although not thought to be directly involved in binding to GP Ib, may modulate the interaction through conformational changes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Adam Corken; Susan Russell; Judith A. Dent; Steven R. Post; Jerry Ware
Objective—The platelet glycoprotein Ib-IX (GP Ib-IX) receptor is a well-characterized adhesion receptor supporting hemostasis and thrombosis via interactions with von Willebrand factor. We examine the GP Ib-IX/von Willebrand factor axis in murine polymicrobial sepsis, as modeled by cecal ligation and puncture (CLP). Approach and Results—Genetic absence of the GP Ib-IX ligand, von Willebrand factor, prolongs survival after CLP, but absence of the receptor, GP Ib-IX, does not. Because absence of either von Willebrand factor or GP Ib-IX significantly impairs hemostasis and thrombosis, we sought to define additional GP Ib-IX–dependent pathways impacting survival in the CLP model. We document that the absence of GP Ib-IX leads to reduced platelet–neutrophil and platelet–monocyte interactions. Twenty-four hours after CLP, absence of GP Ib-IX coincides with an alteration in cytokine levels, such as tumor necrosis factor-&agr; secreted by monocytes, and increased macrophage-1 antigen expression by neutrophils. Conclusions—In contrast to the well-characterized proinflammatory properties of platelets, we describe in the CLP model an anti-inflammatory property associated with platelet GP Ib-IX. Thus, a single platelet receptor displays a dual modulatory role in both the thrombotic and inflammatory pathways associated with polymicrobial sepsis. In sharing leucine-rich motifs with toll-like receptors, platelet GP Ib-IX can be considered a multifunctional participant in hemostasis, thrombosis, and the inflammatory cascade. The results highlight a dynamic role for platelets in systemic inflammation and add to the complex pathophysiologic events that occur during the dysregulated coagulation and inflammation associated with sepsis.
Transfusion | 2011
Muthu Veeraputhiran; Jerry Ware; Judith A. Dent; Joshua A. Bornhorst; Ginell R. Post; Michele Cottler-Fox; Gina Pesek; John W. Theus; Mayumi Nakagawa
BACKGROUND: Washed or volume‐reduced platelets (PLTs) are occasionally requested for patients with a history of allergic or anaphylactic transfusion reactions. However, conclusive data are not available as to which method is more suitable.
International Journal of Radiation Oncology Biology Physics | 2015
Nathan A. Koonce; Charles M. Quick; Matthew Hardee; Azemat Jamshidi-Parsian; Judith A. Dent; Giulio F. Paciotti; Dmitry A. Nedosekin; Ruud P.M. Dings; Robert J. Griffin
PURPOSE Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. METHODS AND MATERIALS The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. RESULTS In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. CONCLUSIONS Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation.