Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith A. Johnson is active.

Publication


Featured researches published by Judith A. Johnson.


Infection Control and Hospital Epidemiology | 2008

Summer Peaks in the Incidences of Gram-Negative Bacterial Infection Among Hospitalized Patients

Eli N. Perencevich; Jessina C. McGregor; Michelle Shardell; Jon P. Furuno; Anthony D. Harris; J. Glenn Morris; David N. Fisman; Judith A. Johnson

OBJECTIVE Recognition of seasonal trends in hospital infections may improve diagnosis, use of empirical therapy, and infection prevention interventions. There are very few data available regarding the seasonal variability of these infections. We quantified the seasonal variation in the incidences of hospital infection caused by common bacterial pathogens and estimated the association between temperature changes and infection rates. METHODS A cohort of all adult patients admitted to the University of Maryland Medical Center during the period from 1998 through 2005 was analyzed. Time-series analyses were used to estimate the association of the number of infections per month caused by Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Staphylococcus aureus, and enterococci with season and temperature, while controlling for long-term trends. RESULTS There were 218,594 admissions to the index hospital, and analysis of 26,624 unique clinical cultures that grew the organisms of interest identified increases in the mean monthly rates of infection caused by P. aeruginosa (28% of isolates recovered; P ! .01), E. cloacae (46%; P ! .01), E. coli (12%; P ! .01), and A. baumannii (21%; Pp.06). For each 10 degrees F increase, we observed a 17% increase in the monthly rates of infection caused by P. aeruginosa (Pp.01) and A. baumanii (Pp.05). CONCLUSION Significantly higher rates of gram-negative infection were observed during the summer months, compared with other seasons. For some pathogens, higher temperatures were associated with higher infection rates, independent of seasonality. These findings have important implications for infection prevention, such as enhanced surveillance during the warmer months, and for choice of empirical antimicrobial therapy among hospitalized adults. Future, quasi-experimental investigations of gram-negative infection prevention initiatives should control for seasonal variation.


Nature | 2017

A randomized synbiotic trial to prevent sepsis among infants in rural India

Pinaki Panigrahi; Sailajanandan Parida; Nimai C. Nanda; Radhanath Satpathy; Lingaraj Pradhan; Dinesh S. Chandel; Lorena Baccaglini; Arjit Mohapatra; Subhranshu S. Mohapatra; Pravas R. Misra; Rama Chaudhry; Hegang Chen; Judith A. Johnson; J. Glenn Morris; Nigel Paneth; Ira H Gewolb

Sepsis in early infancy results in one million annual deaths worldwide, most of them in developing countries. No efficient means of prevention is currently available. Here we report on a randomized, double-blind, placebo-controlled trial of an oral synbiotic preparation (Lactobacillus plantarum plus fructooligosaccharide) in rural Indian newborns. We enrolled 4,556 infants that were at least 2,000 g at birth, at least 35 weeks of gestation, and with no signs of sepsis or other morbidity, and monitored them for 60 days. We show a significant reduction in the primary outcome (combination of sepsis and death) in the treatment arm (risk ratio 0.60, 95% confidence interval 0.48–0.74), with few deaths (4 placebo, 6 synbiotic). Significant reductions were also observed for culture-positive and culture-negative sepsis and lower respiratory tract infections. These findings suggest that a large proportion of neonatal sepsis in developing countries could be effectively prevented using a synbiotic containing L. plantarum ATCC-202195.


Molecular Biology and Evolution | 2011

Testing spatiotemporal hypothesis of bacterial evolution using Methicillin-Resistant Staphylococcus aureus ST239 genome-wide data within a Bayesian framework

Rebecca R. Gray; Andrew J. Tatem; Judith A. Johnson; Alexander V. Alekseyenko; Oliver G. Pybus; Marc A. Suchard; Marco Salemi

Staphylococcus aureus is a common cause of infections that has undergone rapid global spread over recent decades. Formal phylogeographic methods have not yet been applied to the molecular epidemiology of bacterial pathogens because the limited genetic diversity of data sets based on individual genes usually results in poor phylogenetic resolution. Here, we investigated a whole-genome single nucleotide polymorphism (SNP) data set of health care-associated Methicillin-resistant S. aureus sequence type 239 (HA-MRSA ST239) strains, which we analyzed using Markov spatial models that incorporate geographical sampling distributions. The reconstructed timescale indicated a temporal origin of this strain shortly after the introduction of Methicillin, followed by global pandemic spread. The estimate of the temporal origin was robust to the molecular clock, coalescent prior, full/intergenic/synonymous SNP inclusion, and correction for excluded invariant site patterns. Finally, phylogeographic analyses statistically supported the role of human movement in the global dissemination of HA-MRSA ST239, although it was unable to conclusively resolve the location of the root. This study demonstrates that bacterial genomes can indeed contain sufficient evolutionary information to elucidate the temporal and spatial dynamics of transmission. Future applications of this approach to other bacterial strains may provide valuable epidemiological insights that may justify the cost of genome-wide typing.


Infection Control and Hospital Epidemiology | 2015

Whole-genome sequencing for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit: time for routine practice?

Taj Azarian; Robert L. Cook; Judith A. Johnson; Nilmarie Guzman; Yvette S. McCarter; Noel Gomez; Mobeen H. Rathore; J. Glenn Morris; Marco Salemi

BACKGROUND Infants in the neonatal intensive care unit (NICU) are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Outbreaks may be difficult to identify due in part to limitations in current molecular genotyping available in clinical practice. Comparison of genome-wide single nucleotide polymorphisms (SNPs) may identify epidemiologically distinct isolates among a population sample that appears homogenous when evaluated using conventional typing methods. OBJECTIVE To investigate a putative MRSA outbreak in a NICU utilizing whole-genome sequencing and phylogenetic analysis to identify recent transmission events. DESIGN Clinical and surveillance specimens collected during clinical care and outbreak investigation. PATIENTS A total of 17 neonates hospitalized in a 43-bed level III NICU in northeastern Florida from December 2010 to October 2011 were included in this study. METHODS We assessed epidemiological data in conjunction with 4 typing methods: antibiograms, PFGE, spa types, and phylogenetic analysis of genome-wide SNPs. RESULTS Among the 17 type USA300 isolates, 4 different spa types were identified using pulsed-field gel electrophoresis. Phylogenetic analysis identified 5 infants as belonging to 2 clusters of epidemiologically linked cases and excluded 10 unlinked cases from putative transmission events. The availability of these results during the initial investigation would have improved infection control interventions. CONCLUSION Whole-genome sequencing and phylogenetic analysis are invaluable tools for epidemic investigation; they identify transmission events and exclude cases mistakenly implicated by traditional typing methods. When routinely applied to surveillance and investigation in the clinical setting, this approach may provide actionable intelligence for measured, appropriate, and effective interventions.


Journal of Clinical Microbiology | 2011

Multiple-Genome Comparison Reveals New Loci for Mycobacterium Species Identification

Jianli Dai; Yuansha Chen; Susan Dean; J. Glenn Morris; Max Salfinger; Judith A. Johnson

ABSTRACT To identify loci useful for species identification and to enhance our understanding of the population structure and genetic variability of the genus Mycobacterium, we conducted a multiple-genome comparison of a total of 27 sequenced genomes in the suborder of Corynebacterineae (18 from the Mycobacterium genus, 7 from the Corynebacterium genus, 1 each from the Nocardia and Rhodococcus genera). Our study revealed 26 informative loci for species identification in Mycobacterium. The sequences from these loci were used in a phylogenetic analysis to infer the evolutionary relations of the 18 mycobacterial genomes. Among the loci that we identified, rpoBC, dnaK, and hsp65 were amplified from 29 ATCC reference strains and 17 clinical isolates and sequenced. The phylogenetic trees generated from these loci show similar topologies. The newly identified dnaK locus is more discriminatory and more robust than the widely used hsp65 locus. The length-variable rpoBC locus is the first intergenic locus between two protein-encoding genes being used for mycobacterial species identification. A multilocus sequence analysis system including the rpoBC, dnaK, and hsp65 loci is a robust tool for accurate identification of Mycobacterium species.


Mbio | 2014

Phylodynamic Analysis of Clinical and Environmental Vibrio cholerae Isolates from Haiti Reveals Diversification Driven by Positive Selection

Taj Azarian; Afsar Ali; Judith A. Johnson; David W. Mohr; Mattia Prosperi; Nazle M. Veras; Mohammed Jubair; Samantha L. Strickland; Mohammad H. Rashid; Meer T. Alam; Thomas A. Weppelmann; Lee S. Katz; Cheryl L. Tarr; Rita R. Colwell; J. Glenn Morris; Marco Salemi

ABSTRACT Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission. Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.


Fems Microbiology Letters | 2008

Lateral gene transfer of O1 serogroup encoding genes of Vibrio cholerae

Sol González Fraga; Mariana Pichel; Norma Binsztein; Judith A. Johnson; John Glenn Morris; Oscar C. Stine

In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae. Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.


Journal of Medical Microbiology | 2011

Extended-spectrum β-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings

Dinesh S. Chandel; Judith A. Johnson; Rama Chaudhry; Nidhi Sharma; Nandita Shinkre; Sailajanandan Parida; Pravas R. Misra; Pinaki Panigrahi

Extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacilli (GNB) are of increasing clinical concern in all age groups worldwide. Whilst sepsis continues to be the leading cause of morbidity and mortality in Indian neonates in the community, identification of microbiological attributes in this population is lacking. This population-based study enrolled 1738 infants with a diagnosis of clinical sepsis at four participating centres in India. Each study site conducted Bactec blood culture, identified bacterial species by API test and stored isolates at -70 °C. From 252 GNB isolates, 155 (113 Klebsiella species, 21 Escherichia coli and 21 other) were subjected to drug susceptibility testing, ESBL phenotyping and testing for clonal relatedness of ESBL strains by PFGE. The results demonstrated that Klebsiella species and E. coli are the most common GNB causes of neonatal sepsis in India, and over one-third are ESBL producers in both community and hospital settings. ESBL-producing strains exhibited frequent co-resistance to aminoglycosides and ciprofloxacin, but remained susceptible to imipenem. PFGE analysis revealed extensive genetic diversity within the ESBL-producing isolates, showing multiple profiles (total of 23). Over 40% of all ESBL-producing isolates formed three pulsed-field profiles (PFP I-III), with PFP-II being the largest cluster (>20% of all ESBL-producing isolates), sharing strains from two distant locations. Identification of a common clone at two geographically distant centres indicated that predominant clones with increased virulence may exist, even in the absence of any clear outbreak. The presence of ESBL-producing strains in community infants with no prior history of hospitalization or antibiotic use dictates heightened vigilance and further studies on the ecology of these organisms.


Journal of Water and Health | 2009

Virulence factor–activity relationships (VFAR) with specific emphasis on Aeromonas species (spp.)

Ashok K. Chopra; Joerg Graf; Amy J. Horneman; Judith A. Johnson

The human population most commonly inflicted with Aeromonas infection includes young children, the elderly and immunocompromised individuals. Importantly, the isolation rate of Aeromonas species from children suffering from diarrhea is similar in developing and developed countries. It is becoming clear that only a small subset of Aeromonas species belonging to a particular hybridization group causes disease in humans. Human infections with this pathogen occur by consuming contaminated food and water. Aeromonas species were isolated from wounds of patients during the tsunami in southern Thailand. Further, increased numbers of this pathogen were recovered from floodwater samples during Hurricane Katrina in New Orleans. Among various species of Aeromonas, A. hydrophila, A. caviae and A. veronii biovar sobria are mainly responsible for causing disease in humans. Our laboratory has isolated various virulence factors from a diarrheal isolate SSU of A. hydrophila and molecularly characterized them. In addition to various virulence factors produced by Aeromonas species, the status of the immune system plays an important role in inducing disease by this pathogen in the host. Taken together, we have made significant advances in better understanding the pathogenesis of Aeromonas infections, which will help in differentiating pathogenic from non-pathogenic aeromonads. This review covers virulence aspects of a clinical isolate of A. hydrophila.


American Journal of Clinical Pathology | 2011

Clinical Laboratory Detection of AmpC β-Lactamase Does It Affect Patient Outcome?

Kenneth H. Rand; Bradley Turner; Christine Hansen; Judith A. Johnson; Andrea Zimmer

Plasmid-mediated AmpC-producing Escherichia coli and Klebsiella pneumoniae have been associated with poor clinical outcomes, but they are not readily identified in hospital microbiology laboratories. We tested 753 gram-negative bloodstream isolates for AmpC by using the EDTA disk test and the modified Hodge test (n = 172) and the modified Hodge test alone (n = 581). The 30-day mortality for the AmpC group was 9% (2/23) and was 6% (3/51) for the control group. The clinical response was similar: afebrile on day 2 (AmpC group, 16/23 [70%]; control group, 32/45 [71%]) and on day 4 (AmpC group, 19/22 [86%]; control group, 37/44 [84%]). Patients with isolates in the AmpC group were more likely to be in an intensive care unit at the time of the positive blood culture (P = .01) and more likely to be intubated (P = .05) than patients with isolates in the control group. Effective antibiotic treatment within the first 48 hours was given to 47 (92%) of 51 patients with isolates in the control group but to only 14 (61%) of 23 patients with isolates in the AmpC group (P = .001). The modified Hodge test and the EDTA disk test did not identify patients at risk for a poor outcome from AmpC-producing bacterial infections.

Collaboration


Dive into the Judith A. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Afsar Ali

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pinaki Panigrahi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge