Judith A. Kowalchyk
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judith A. Kowalchyk.
Neuron | 2002
Xiaodong Zhang; Mindy J. Kim-Miller; Mitsunori Fukuda; Judith A. Kowalchyk; Thomas F. J. Martin
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion.
Journal of Cell Biology | 2008
Declan J. James; Chuenchanok Khodthong; Judith A. Kowalchyk; Thomas F. J. Martin
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P2 as ∼6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P2 soluble NSF attachment protein receptor (SNARE)–dependent liposome fusion is inhibited. Inhibition by PI 4,5-P2 likely results from its intrinsic positive curvature–promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P2, suggesting that syntaxin sequesters PI 4,5-P2 to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P2, we test a PI 4,5-P2–binding priming factor required for vesicle exocytosis. Ca2+-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P2 dependent. These results indicate that PI 4,5-P2 regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Journal of Biological Chemistry | 1996
Abhijit Banerjee; Judith A. Kowalchyk; Bibhuti R. DasGupta; Thomas F. J. Martin
The Ca2+-activated fusion of large dense core vesicles (LDCVs) with the plasma membrane is reconstituted in mechanically permeabilized PC12 cells by provision of millimolar MgATP and cytosolic proteins. Ca2+-activated LDCV exocytosis was inhibited completely by the type E but not the type A botulinum neurotoxin (BoNT) even though both BoNTs were equally effective in proteolytically cleaving the synaptosome-associated protein of 25 kDa (SNAP-25). The greater inhibition of exocytosis by BoNT E correlated with a greater destabilization of detergent-extracted complexes consisting of SNAP-25, synaptobrevin, and syntaxin. LDCVs in permeable PC12 cells can be poised at a late postdocking, prefusion state by MgATP-dependent priming processes catalyzed by N-ethylmaleimide sensitive factor and priming in exocytosis proteins. BoNT E completely blocked Ca2+-activated LDCV exocytosis in ATP-primed cells, whereas BoNT A was only slightly inhibitory, implying that the C-terminal region of SNAP-25 (Ile181-Gln197) between the cleavage sites for BoNT E and BoNT A is essential for late postdocking steps. A required role for SNAP-25 at this stage was also indicated by inhibition of Ca2+-activated LDCV fusion in ATP-primed cells by a C-terminal peptide antibody. We conclude that plasma membrane SNAP-25, particularly residues 181-197, is required for Ca2+-regulated membrane fusion at a step beyond LDCV docking and ATP utilization.
Neuron | 2004
Ruslan N. Grishanin; Judith A. Kowalchyk; Vadim A. Klenchin; Kyougsook Ann; Cynthia A. Earles; Edwin R. Chapman; Roy Gerona; Thomas F. J. Martin
CAPS-1 is required for Ca2+-triggered fusion of dense-core vesicles with the plasma membrane, but its site of action and mechanism are unknown. We analyzed the kinetics of Ca2+-triggered exocytosis reconstituted in permeable PC12 cells. CAPS-1 increased the initial rate of Ca2+-triggered vesicle exocytosis by acting at a rate-limiting, Ca2+-dependent prefusion step. CAPS-1 activity depended upon prior ATP-dependent priming during which PIP2 synthesis occurs. CAPS-1 activity and binding to the plasma membrane depended upon PIP2. Ca2+ was ineffective in triggering vesicle fusion in the absence of CAPS-1 but instead promoted desensitization to CAPS-1 resulting from decreased plasma membrane PIP2. We conclude that CAPS-1 functions following ATP-dependent priming as a PIP2 binding protein to enhance Ca2+-dependent DCV exocytosis. Essential prefusion steps in dense-core vesicle exocytosis involve sequential ATP-dependent synthesis of PIP2 and the subsequent PIP2-dependent action of CAPS-1. Regulation of PIP2 levels and CAPS-1 activity would control the secretion of neuropeptides and monoaminergic transmitters.
Journal of Biological Chemistry | 1997
Kyoungsook Ann; Judith A. Kowalchyk; Kelly M. Loyet; Thomas F. J. Martin
Exocytotic secretion in neuroendocrine cells is activated by cytoplasmic Ca2+ increases. Late post-docking events in dense core vesicle exocytosis in permeable PC12 cells require cytosolic factors for sequential ATP-dependent priming and Ca2+-dependent triggering steps. The cytosolic proteins phosphatidylinositol transfer protein and phosphatidylinositol (4)-phosphate 5-kinase, as well as membrane-boundN-ethylmaleimide-sensitive factor, are required for the ATP-dependent priming step. Following priming, the Ca2+-dependent triggering of vesicle fusion requires an additional cytosolic factor, CAPS, which was purified as a 145-kDa protein. To clarify late Ca2+-dependent events in vesicle fusion, the sequence of rat CAPS cDNA was determined and found to encode a novel protein that is the vertebrate homologue of the Caenorhabditis elegans UNC-31 protein shown genetically to be required for neurosecretion. Recombinant CAPS substituted for cytosol in the Ca2+ triggering step in permeable PC12 cells and exhibited moderate affinity (K d = 270 μm) Ca2+binding (2 mol Ca2+/mol CAPS dimer), consistent with a role at a Ca2+-regulated step in exocytosis.
Nature Neuroscience | 2005
Trillium Blackmer; Eric C. Larsen; Cheryl J. Bartleson; Judith A. Kowalchyk; Eun Ja Yoon; Anita M. Preininger; Simon Alford; Heidi E. Hamm; Thomas F. J. Martin
The activation of G protein–coupled receptors (GPCRs) can result in an inhibition of Ca2+-dependent hormone and neurotransmitter secretion. This has been attributed in part to G protein inhibition of Ca2+ influx. However, a frequently dominant inhibitory effect, of unknown mechanism, also occurs distal to Ca2+ entry. Here we characterize direct inhibitory actions of G protein βγ (Gβγ) on Ca2+-triggered vesicle exocytosis in permeable PC12 cells. Gβγ inhibition was rapid (<1 s) and was attenuated by cleavage of synaptosome-associated protein of 25 kD (SNAP25). Gβγ bound soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, and binding was reduced to SNARE complexes containing cleaved SNAP25 or by Ca2+-dependent synaptotagmin binding. Here we show inhibitory coupling between GPCRs and vesicle exocytosis mediated directly by Gβγ interactions with the Ca2+-dependent fusion machinery.
Neuron | 1998
Anurag Tandon; Sergei I. Bannykh; Judith A. Kowalchyk; Abhijit Banerjee; Thomas F. J. Martin; William E. Balch
Using a novel approach to measure exocytosis in vitro from semi-intact synaptosomes, we establish that the Ca2+-dependent release of glutamate requires cytosolic factors for mobilization from the reserve pool. The cytosolic activity for glutamate release was not satisfied by CAPS, a soluble component required for norepinephrine (NE) release. Moreover, the CAPS-independent glutamate release from synaptic vesicles (SVs) was 200-fold less sensitive to Ca2+ than that required for dense core vesicles (DCVs). The differential regulation of exocytosis by CAPS, Ca2+, and potential novel cytosolic factor(s) suggests that the docking and fusion machinery controlling DCVs has diverged from that regulating glutamate-containing SVs.
Journal of Biological Chemistry | 2002
Mitsunori Fukuda; Judith A. Kowalchyk; Xiaodong Zhang; Thomas F. J. Martin; Katsuhiko Mikoshiba
Synaptotagmin (Syt) I-deficient phaeochromocytoma (PC12) cell lines show normal Ca2+-dependent norepinephrine (NE) release (Shoji-Kasai, Y., Yoshida, A., Sato, K., Hoshino, T., Ogura, A., Kondo, S., Fujimoto, Y., Kuwahara, R., Kato, R., and Takahashi, M. (1992) Science 256, 1821–1823). To identify an alternative Ca2+ sensor, we searched for other Syt isoforms in Syt I-deficient PC12 cells and identified Syt IX, an isoform closely related to Syt I, as an abundantly expressed dense-core vesicle protein. Here we show that Syt IX is required for the Ca2+-dependent release of NE from PC12 cells. Antibodies directed against the C2A domain of either Syt IX or Syt I inhibited Ca2+-dependent NE release in permeable PC12 cells indicating that both Syt proteins function in dense-core vesicle exocytosis. Our results support the idea that Syt family proteins that co-reside on secretory vesicles may function cooperatively and redundantly as potential Ca2+ sensors for exocytosis.
Journal of Biological Chemistry | 1997
Thomas F. J. Martin; Judith A. Kowalchyk
The Ca2+-activated fusion of secretory vesicles with the plasma membrane responsible for regulated neurotransmitter and hormone secretion has previously been studied in permeable neuroendocrine cells, where requirements for ATP and cytosolic proteins were identified. As reported here, Ca2+-activated fusion mechanisms are also preserved following cell homogenization. The release of norepinephrine (NE) and other vesicle constituents from a PC12 cell membrane fraction was activated by micromolar Ca2+ (EC50 ∼ 3 μm) and exhibited a dependence upon MgATP and cytosol. Ca2+-dependent NE release was inhibited by botulinum neurotoxins and by CAPS (Ca2+-dependent activator protein for secretion) antibody implying that syntaxin, synaptobrevin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and CAPS are required for regulated exocytosis in this system. The exocytosis-competent membrane fraction consisted of rapidly sedimenting dense core vesicles associated with plasma membrane fragments. Free vesicles did not release NE either in the absence or presence of plasma membranes, indicating that only docked vesicles were competent for exocytosis under the reconstitution conditions used. A cell-free system for Ca2+-activated fusion will facilitate studies on the roles of essential proteins such as syntaxin, synaptobrevin, SNAP-25, and CAPS that act at post-docking steps in the regulated exocytotic pathway.
Biochemical and Biophysical Research Communications | 1985
D. O. Lucas; S. M. Bajjalieh; Judith A. Kowalchyk; Thomas F. J. Martin
Polyphosphoinositide hydrolysis was examined in membranes from thyrotropin-releasing hormone (TRH)-responsive GH3 pituitary cells. [3H]Inositol phosphates (IP2 and IP3) were generated upon incubation of membranes from [3H]inositol-labeled cells indicating the presence of a membrane-associated polyphosphoinositide phosphodiesterase (PPI PDE). Membrane PPI PDE activity was found to be stimulated by TRH and by GTP-gamma-S in Ca2+-modulated manner. In addition, TRH-stimulated PPI hydrolysis was potentiated by GTP. These results demonstrate direct in vitro effects of a hormone on PPI turnover and suggest the involvement of a GTP-binding component in transmembrane signalling by TRH.