Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Agudo is active.

Publication


Featured researches published by Judith Agudo.


Journal of Clinical Investigation | 2012

Cross-presenting CD103+ dendritic cells are protected from influenza virus infection.

Julie Helft; Balaji Manicassamy; Pierre Guermonprez; Daigo Hashimoto; Aymeric Silvin; Judith Agudo; Brian D. Brown; Mirco Schmolke; Jennifer Miller; Marylene Leboeuf; Kenneth M. Murphy; Adolfo García-Sastre; Miriam Merad

CD8+ cytotoxic T cells are critical for viral clearance from the lungs upon influenza virus infection. The contribution of antigen cross-presentation by DCs to the induction of anti-viral cytotoxic T cells remains controversial. Here, we used a recombinant influenza virus expressing a nonstructural 1-GFP (NS1-GFP) reporter gene to visualize the route of antigen presentation by lung DCs upon viral infection in mice. We found that lung CD103+ DCs were the only subset of cells that carried intact GFP protein to the draining LNs. Strikingly, lung migratory CD103+ DCs were not productively infected by influenza virus and thus were able to induce virus-specific CD8+ T cells through the cross-presentation of antigens from virally infected cells. We also observed that CD103+ DC resistance to infection correlates with an increased anti-viral state in these cells that is dependent on the expression of type I IFN receptor. These results show that efficient cross-priming by migratory lung DCs is coupled to the acquisition of an anti-viral status, which is dependent on the type I IFN signaling pathway.


Immunity | 2016

Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition

Hélène Salmon; Juliana Idoyaga; Adeeb Rahman; Marylene Leboeuf; Romain Remark; Stefan Jordan; Maria Casanova-Acebes; Makhzuna Khudoynazarova; Judith Agudo; Navpreet Tung; Svetoslav Chakarov; Christina Rivera; Brandon Hogstad; Marcus Bosenberg; Daigo Hashimoto; Sacha Gnjatic; Nina Bhardwaj; Anna Karolina Palucka; Brian D. Brown; Joshua Brody; Florent Ginhoux; Miriam Merad

Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.


Diabetologia | 2008

Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice

Sylvie Franckhauser; Ivet Elias; V. Rotter Sopasakis; Tura Ferre; I. Nagaev; Christian X. Andersson; Judith Agudo; Jesús Ruberte; Fatima Bosch; Ulf Smith

Aims/hypothesisIL-6 is released by the adipose tissue and increased circulating levels in obesity are associated with hyperinsulinaemia and insulin resistance. Short-term experiments suggest that increased IL-6 release by the skeletal muscle following exercise may improve insulin sensitivity.MethodsIn order to examine the effect of chronically elevated IL-6 levels, we overexpressed Il6 in skeletal muscle in mice using an electro-transfer procedure.ResultsCirculating IL-6 levels were increased and the animals rapidly lost both weight and body fat, but food intake was unchanged, which is consistent with the finding that IL-6 increased energy expenditure. Insulin levels were inappropriately elevated and combined with hypoglycaemia in spite of reduced 2-deoxy-d-glucose uptake by skeletal muscle. Insulin-stimulated glucose uptake by skeletal muscles ex vivo was reduced, probably due to the decreased amounts of glucose transporter (GLUT)-4. Beta cell insulin content was increased, while apparent beta cell mass was unchanged. Circulating serum amyloid A cluster levels were increased tenfold due to a pronounced proinflammatory state in the liver with infiltration of inflammatory cells. However, no liver steatosis was found, which may be accounted for by concomitant AMP kinase activation.Conclusions/interpretationChronically elevated IL-6 levels lead to inappropriate hyperinsulinaemia, reduced body weight, impaired insulin-stimulated glucose uptake by the skeletal muscles and marked inflammation in the liver. Thus, the pleiotrophic effects of chronically elevated IL-6 levels preclude any obvious usefulness in treating obesity or its associated metabolic complications in man, despite the fact that weight reduction may be expected.


Diabetologia | 2003

Long-term overexpression of glucokinase in the liver of transgenic mice leads to insulin resistance

Tura Ferre; Efren Riu; Sylvie Franckhauser; Judith Agudo; Fatima Bosch

Aims/hypothesisGlucokinase overexpression in the liver increases glucose uptake and utilization, and improves glucose tolerance in young transgenic mice. Here, we examined the long-term effects of hepatic overexpression of glucokinase on glucose homeostasis. Moreover, we determined whether glucokinase overexpression counteracted high-fat diet-induced insulin resistance.MethodsTransgenic mice overexpressing glucokinase in liver under the control of the phosphoenolpyruvate carboxykinase promoter, fed either a standard diet or a high-fat diet, were studied. We used non-transgenic littermates as controls.ResultsTransgenic mice over 6 months old developed impaired glucose tolerance. In addition, at 12 months of age, transgenic mice showed mild hyperglycaemia, hyperinsulinaemia and hypertriglyceridaemia. In spite of increased glucokinase activity, the liver of these mice accumulated less glycogen and increased triglyceride deposition. When 2-month-old glucose-tolerant mice were fed a high-fat diet, transgenic mice gained more body weight and became hyperglycaemic and hyperinsulinaemic. This was concomitant to glucose intolerance, liver steatosis and whole-body insulin resistance.Conclusion/interpretationLong-term overexpression of glucokinase increases hepatic lipogenesis and circulating lipids, which lead to insulin resistance. Our results also suggest that the liver plays a key role in the onset of diabetes.


Nature Immunology | 2014

The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids

Judith Agudo; Albert Ruzo; Navpreet Tung; Hélène Salmon; Marylene Leboeuf; Daigo Hashimoto; Christian Becker; Lee Ann Garrett-Sinha; Alessia Baccarini; Miriam Merad; Brian D. Brown

miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126–VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.


Diabetes | 2012

Vascular Endothelial Growth Factor–Mediated Islet Hypervascularization and Inflammation Contribute to Progressive Reduction of β-Cell Mass

Judith Agudo; Eduard Ayuso; Veronica Jimenez; Alba Casellas; Cristina Mallol; Ariana Salavert; Sabrina Tafuro; Mercè Obach; Albert Ruzo; Marta Moya; Anna Pujol; Fatima Bosch

Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D.


Diabetes | 2006

Expression of IGF-I in Pancreatic Islets Prevents Lymphocytic Infiltration and Protects Mice From Type 1 Diabetes

Alba Casellas; Ariana Salavert; Judith Agudo; Eduard Ayuso; Veronica Jimenez; Marta Moya; Sergio Muñoz; Sylvie Franckhauser; Fatima Bosch

Type 1 diabetic patients are diagnosed when β-cell destruction is almost complete. Reversal of type 1 diabetes will require β-cell regeneration from islet cell precursors and prevention of recurring autoimmunity. IGF-I expression in β-cells of streptozotocin (STZ)-treated transgenic mice regenerates the endocrine pancreas by increasing β-cell replication and neogenesis. Here, we examined whether IGF-I also protects islets from autoimmune destruction. Expression of interferon (IFN)-β in β-cells of transgenic mice led to islet β2-microglobulin and Fas hyperexpression and increased lymphocytic infiltration. Pancreatic islets showed high insulitis, and these mice developed overt diabetes when treated with very-low doses of STZ, which did not affect control mice. IGF-I expression in IFN-β–expressing β-cells of double-transgenic mice reduced β2-microglobulin, blocked Fas expression, and counteracted islet infiltration. This was parallel to a decrease in β-cell death by apoptosis in islets of STZ-treated IGF-I+IFN-β–expressing mice. These mice were normoglycemic, normoinsulinemic, and showed normal glucose tolerance. They also presented similar pancreatic insulin content and β-cell mass to healthy mice. Thus, local expression of IGF-I prevented islet infiltration and β-cell death in mice with increased susceptibility to diabetes. These results indicate that pancreatic expression of IGF-I may regenerate and protect β-cell mass in type 1 diabetes.


Human Gene Therapy | 2004

In vivo gene transfer to pancreatic beta cells by systemic delivery of adenoviral vectors.

Eduard Ayuso; Miguel Chillón; Judith Agudo; Virginia Haurigot; Assumpció Bosch; Ana Carretero; Pedro J. Otaegui; Fatima Bosch

Type 1 diabetes results from autoimmune destruction of pancreatic beta cells. This process might be reversed by genetically engineering the endocrine pancreas in vivo to express factors that induce beta cell replication and neogenesis and counteract the immune response. However, the pancreas is difficult to manipulate and pancreatitis is a serious concern, which has made effective gene transfer to this organ elusive. Thus, new approaches for gene delivery to the pancreas in vivo are required. Here we show that pancreatic beta cells were efficiently transduced to express beta-galactosidase after systemic injection of adenovirus into mice with clamped hepatic circulation. Seven days after vector administration about 70% of pancreatic islets showed beta-galactosidase expression, with an average of about 20% of the cells within positive islets being transduced. In addition, scattered acinar cells expressing beta-galactosidase were also observed. Thus, this approach may be used to transfer genes of interest to mouse islets and beta cells, both for the study of islet biology and gene therapy of diabetes and other pancreatic disorders.


Diabetologia | 2008

IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice

Judith Agudo; Eduard Ayuso; Veronica Jimenez; Ariana Salavert; Alba Casellas; Sabrina Tafuro; Virginia Haurigot; Jesús Ruberte; Segovia Jc; Juan A. Bueren; Fatima Bosch

Aims/hypothesisRecovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration.MethodsStreptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry.ResultsDespite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice.Conclusions/interpretationThese findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.


Nature Communications | 2014

Hepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors

Benjamin Israelow; Gavriel Mullokandov; Judith Agudo; Marion Sourisseau; Ali Bashir; Andres Y. Maldonado; Arvin C. Dar; Brian D. Brown; Matthew J. Evans

Hepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titers in HCV infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time. Unexpectedly, we observed the emergence of a HCV variant that is resistant to miR-122 knockdown. Next-generation sequencing revealed that this was due to a single nucleotide change at position 28 (G28A) of the HCV genome, which falls between the two miR-122 seed-binding sites. Naturally occurring HCV isolates encoding G28A are similarly resistant to miR-122 inhibition, indicating that subtle differences in viral sequence, even outside the seed-binding site, greatly influence HCV’s miR-122 concentration requirement. Additionally, we found that HCV itself reduces miR-122’s activity in the cell, possibly through binding and sequestering miR-122. Our study provides insight into the interaction between miR-122 and HCV, including viral adaptation to reduced miR-122 bioavailability, and has implications for the development of anti-miR-122-based HCV drugs.

Collaboration


Dive into the Judith Agudo's collaboration.

Top Co-Authors

Avatar

Fatima Bosch

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Brian D. Brown

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alba Casellas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Virginia Haurigot

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Veronica Jimenez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Albert Ruzo

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Miriam Merad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ariana Salavert

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jesús Ruberte

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge