Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Anderson is active.

Publication


Featured researches published by Judith Anderson.


Blood | 2010

Osteoclasts are important for bone angiogenesis

Frank C. Cackowski; Judith Anderson; Kenneth D. Patrene; Rushir J. Choksi; Steven D. Shapiro; Jolene J. Windle; Harry C. Blair; G. David Roodman

Increased osteoclastogenesis and angiogenesis occur in physiologic and pathologic conditions. However, it is unclear if or how these processes are linked. To test the hypothesis that osteoclasts stimulate angiogenesis, we modulated osteoclast formation in fetal mouse metatarsal explants or in adult mice and determined the effect on angiogenesis. Suppression of osteoclast formation with osteoprotegerin dose-dependently inhibited angiogenesis and osteoclastogenesis in metatarsal explants. Conversely, treatment with parathyroid hormone related protein (PTHrP) increased explant angiogenesis, which was completely blocked by osteoprotegerin. Further, treatment of mice with receptor activator of nuclear factor-kappaB ligand (RANKL) or PTHrP in vivo increased calvarial vessel density and osteoclast number. We next determined whether matrix metalloproteinase-9 (MMP-9), an angiogenic factor predominantly produced by osteoclasts in bone, was important for osteoclast-stimulated angiogenesis. The pro-angiogenic effects of PTHrP or RANKL were absent in metatarsal explants or calvaria in vivo, respectively, from Mmp9(-/-) mice, demonstrating the importance of MMP-9 for osteoclast-stimulated angiogenesis. Lack of MMP-9 decreased osteoclast numbers and abrogated angiogenesis in response to PTHrP or RANKL in explants and in vivo but did not decrease osteoclast differentiation in vitro. Thus, MMP-9 modulates osteoclast-stimulated angiogenesis primarily by affecting osteoclasts, most probably by previously reported migratory effects on osteoclasts. These results clearly demonstrate that osteoclasts stimulate angiogenesis in vivo through MMP-9.


Clinical Cancer Research | 2006

Combination Mammalian Target of Rapamycin Inhibitor Rapamycin and HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin Has Synergistic Activity in Multiple Myeloma

Lanie Francis; Yazan Alsayed; Xavier Leleu; Xiaoying Jia; Ujjal Singha; Judith Anderson; Michael Timm; Hai Ngo; Ganwei Lu; Alissa Huston; Lori A. Ehrlich; Elizabeth A. Dimmock; Suzanne Lentzsch; Teru Hideshima; G. David Roodman; Kenneth C. Anderson; Irene M. Ghobrial

Purpose: The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway and the heat shock protein family are up-regulated in multiple myeloma and are both regulators of the cyclin D/retinoblastoma pathway, a critical pathway in multiple myeloma. Inhibitors of mTOR and HSP90 protein have showed in vitro and in vivo single-agent activity in multiple myeloma. Our objective was to determine the effects of the mTOR inhibitor rapamycin and the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on multiple myeloma cells. Experimental Design: Multiple myeloma cell lines were incubated with rapamycin (0.1-100 nmol/L) and 17-AAG (100-600 nmol/L) alone and in combination. Results: In this study, we showed that the combination of rapamycin and 17-AAG synergistically inhibited proliferation, induced apoptosis and cell cycle arrest, induced cleavage of poly(ADP-ribose) polymerase and caspase-8/caspase-9, and dysregulated signaling in the phosphatidylinositol 3-kinase/AKT/mTOR and cyclin D1/retinoblastoma pathways. In addition, we showed that both 17-AAG and rapamycin inhibited angiogenesis and osteoclast formation, indicating that these agents target not only multiple myeloma cells but also the bone marrow microenvironment. Conclusions: These studies provide the basis for potential clinical evaluation of this combination for multiple myeloma patients.


Blood | 2011

Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease

Sonia D'Souza; Davide Del Prete; Shunqian Jin; Quanhong Sun; Alissa Huston; Flavia Esteve Kostov; Bénédicte Sammut; Chang Sook Hong; Judith Anderson; Kenneth D. Patrene; Shibing Yu; Chinavenmeni S. Velu; Guozhi Xiao; H. Leighton Grimes; G. David Roodman; Deborah L. Galson

Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti-TNF-α and anti-IL-7 antibodies. Importantly, BMSCs isolated from Gfi1(-/-) mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease.


Leukemia | 2013

Hypoxia-inducible factor (HIF)-1α suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction

Paola Storti; Marina Bolzoni; Gaetano Donofrio; Irma Airoldi; Daniela Guasco; Denise Toscani; Eugenia Martella; Mirca Lazzaretti; Cristina Mancini; Luca Agnelli; Kenneth D. Patrene; S. Maïga; Valentina Franceschi; Simona Colla; Judith Anderson; Antonino Neri; Martine Amiot; Franco Aversa; G. David Roodman; Nicola Giuliani

Hypoxia-inducible transcription factor-1 (HIF-1α) is overexpressed in multiple myeloma (MM) cells within the hypoxic microenvironment. Herein, we explored the effect of persistent HIF-1α inhibition by a lentivirus short hairpin RNA pool on MM cell growth either in vitro or in vivo and on the transcriptional and pro-angiogenic profiles of MM cells. HIF-1α suppression did not have a significant impact on MM cell proliferation and survival in vitro although, increased the antiproliferative effect of lenalidomide. On the other hand, we found that HIF-1α inhibition in MM cells downregulates the pro-angiogenic genes VEGF, IL8, IL10, CCL2, CCL5 and MMP9. Pro-osteoclastogenic cytokines were also inhibited, such as IL-7 and CCL3/MIP-1α. The effect of HIF-1α inhibition was assessed in vivo in nonobese diabetic/severe combined immunodeficiency mice both in a subcutaneous and an intratibial MM model. HIF-1α inhibition caused a dramatic reduction in the weight and volume of the tumor burden in both mouse models. Moreover, a significant reduction of the number of vessels and vascular endothelial growth factors (VEGFs) immunostaining was observed. Finally, in the intratibial experiments, HIF-1α inhibition significantly blocked bone destruction. Overall, our data indicate that HIF-1α suppression in MM cells significantly blocks MM-induced angiogenesis and reduces MM tumor burden and bone destruction in vivo, supporting HIF-1α as a potential therapeutic target in MM.


Cancer Research | 2016

Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma

Jesus Delgado-Calle; Judith Anderson; Meloney D. Cregor; Masahiro Hiasa; John M. Chirgwin; Nadia Carlesso; Toshiyuki Yoneda; Khalid S. Mohammad; Lilian I. Plotkin; G. David Roodman; Teresita Bellido

In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.


Experimental Hematology | 2001

Ibandronate decreases bone disease development and osteoclast stimulatory activity in an in vivo model of human myeloma

Jose C. Cruz; Melissa Alsina; Fiona E. Craig; Toshiyuki Yoneda; Judith Anderson; Mark Dallas; G. David Roodman

The benefits of bisphosphonate therapy for multiple myeloma bone disease have been clearly documented. However, the effects of bisphosphonates on the osteoclast stimulatory activity (OSA) that is present in the marrow of patients with multiple myeloma, even before the bone disease is detectable, are unknown. Therefore, we examined the effects of ibandronate (IB) treatment prior to the development of bone disease in a murine model of human myeloma. Sublethally irradiated severe combined immunodeficient (SCID) mice were transplanted with ARH-77 cells on day 0. These ARH-77 mice were treated daily with subcutaneous injections of IB started before or at different times after tumor injection as follows: group 1 was started on day -7; group 2 on day 0; group 3 on day +7; group 4 on day +14 after IB administration; and group 5 (control) received no IB. Mice were sacrificed after they developed paraplegia. The onset of paraplegia was delayed in group 1 vs all other groups (mean day 27 vs day 32; p = 0.0098). The number of lytic lesions and the bone surface area of resorption (mm(2)) were significantly decreased in groups 1, 2, and 3, which were treated early with IB, when compared with groups 4 and 5 (p = 0.003 and 0.002, respectively). OSA, as measured by the capacity of bone marrow plasma from ARH-77 mice to induce osteoclast (OCL) formation in human bone marrow cultures, was decreased proportionally to the length of IB treatment. Group 1 had the lowest OSA compared with the other groups (p = 0.003). However, all mice eventually developed paraplegia, and at time of sacrifice, tumor burden was not grossly different among the groups. Interestingly, macroscopic abdominal tumors were more frequent in mice treated with IB. These data demonstrate that early treatment of ARH-77 mice with IB prior to development of myeloma bone disease decreases OSA and possibly retards the development of lytic lesions, but not eventual tumor burden.


Leukemia | 2014

Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma.

Rebecca Silbermann; Marina Bolzoni; Paola Storti; Daniela Guasco; Sabrina Bonomini; Dan Zhou; Jingwei Wu; Judith Anderson; Jolene J. Windle; Franco Aversa; G. David Roodman; Nicola Giuliani

Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma


Journal of Biological Chemistry | 2006

Cloning and Characterization of the Annexin II Receptor on Human Marrow Stromal Cells

Ganwei Lu; Hidefumi Maeda; Sakamuri V. Reddy; Noriyoshi Kurihara; Robin J. Leach; Judith Anderson; G. David Roodman

Annexin II is a heterotetramer, consisting of two 11-kDa (p11) and two 36-kDa (p36) subunits, that is produced by osteoclasts and stimulates osteoclast formation. However, its receptor is unknown. We showed that annexin II binds to normal primary human marrow stromal cells and the Pagets marrow-derived PSV10 stromal cell line to induce osteoclast formation. 125I-Labeled annexin II binding assays with PSV10 cells demonstrated that there was a single class of annexin II receptors with a Kd of 5.79 nm and Bmax of 2.13 × 105 receptors/cell. Annexin III or annexin V did not bind this receptor. Using 125I-labeled annexin II binding to screen NIH3T3 transfected with a human marrow cDNA expression library, we identified a putative annexin II receptor clone, which encoded a novel 26-kDa type I membrane receptor protein when expressed in HEK 293 cells. HEK 293 cells transformed with the cloned annexin II receptor cDNA showed a similar binding affinity to annexin II as that observed in PSV10 cells. Chemical cross-linking experiments with biotinylated annexin II and intact PSV10 cells identified a 55-kDa band on Western blot analysis that reacted with both an anti-p11 antibody and streptavidin but not anti-p36 antibody. A rabbit polyclonal antibody raised against the putative recombinant annexin II receptor also recognized the same 26-kDa protein band detected in PSV10 cells. Importantly, the annexin II receptor antibody dose-dependently blocked the stimulatory effects of annexin II on human osteoclast formation, demonstrating that the receptor mediates the effects of annexin II on osteoclast formation.


Journal of Biological Chemistry | 2013

Critical Role of AKT Protein in Myeloma-induced Osteoclast Formation and Osteolysis

Huiling Cao; Ke Zhu; Lugui Qiu; Shuai Li; Hanjie Niu; Mu Hao; Shengyong Yang; Zhongfang Zhao; Yumei Lai; Judith Anderson; Jie Fan; Hee-Jeong Im; Di Chen; G. David Roodman; Guozhi Xiao

Background: Myeloma cells cause abnormal osteoclast formation and osteolysis. Results: Myeloma cells up-regulate AKT in osteoclast precursors and promote osteoclast formation. Systemic AKT inhibition blocks the myeloma-induced osteolysis and tumor growth in bone. Conclusion: AKT is critical for the myeloma promotion of osteoclast formation and osteolysis. Significance: AKT could be a useful target for treating patients with myeloma bone disease. Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors.


Molecular Cancer Research | 2017

EZH2 or HDAC1 Inhibition Reverses Multiple Myeloma–Induced Epigenetic Suppression of Osteoblast Differentiation

Juraj Adamik; Shunqian Jin; Quanhong Sun; Peng Zhang; Kurt R. Weiss; Judith Anderson; Rebecca Silbermann; G. David Roodman; Deborah L. Galson

In multiple myeloma, osteolytic lesions rarely heal because of persistent suppressed osteoblast differentiation resulting in a high fracture risk. Herein, chromatin immunoprecipitation analyses reveal that multiple myeloma cells induce repressive epigenetic histone changes at the Runx2 locus that prevent osteoblast differentiation. The most pronounced multiple myeloma–induced changes were at the Runx2-P1 promoter, converting it from a poised bivalent state to a repressed state. Previously, it was observed that multiple myeloma induces the transcription repressor GFI1 in osteoblast precursors, which correlates with decreased Runx2 expression, thus prompting detailed characterization of the multiple myeloma and TNFα-dependent GFI1 response element within the Runx2-P1 promoter. Further analyses reveal that multiple myeloma–induced GFI1 binding to Runx2 in osteoblast precursors and recruitment of the histone modifiers HDAC1, LSD1, and EZH2 is required to establish and maintain Runx2 repression in osteogenic conditions. These GFI1-mediated repressive chromatin changes persist even after removal of multiple myeloma. Ectopic GFI1 is sufficient to bind to Runx2, recruit HDAC1 and EZH2, increase H3K27me3 on the gene, and prevent osteogenic induction of endogenous Runx2 expression. Gfi1 knockdown in MC4 cells blocked multiple myeloma–induced recruitment of HDAC1 and EZH2 to Runx2, acquisition of repressive chromatin architecture, and suppression of osteoblast differentiation. Importantly, inhibition of EZH2 or HDAC1 activity in pre-osteoblasts after multiple myeloma exposure in vitro or in osteoblast precursors from patients with multiple myeloma reversed the repressive chromatin architecture at Runx2 and rescued osteoblast differentiation. Implications: This study suggests that therapeutically targeting EZH2 or HDAC1 activity may reverse the profound multiple myeloma–induced osteoblast suppression and allow repair of the lytic lesions. Mol Cancer Res; 15(4); 405–17. ©2017 AACR.

Collaboration


Dive into the Judith Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quanhong Sun

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge