Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Kandel is active.

Publication


Featured researches published by Judith Kandel.


American Journal of Physiology-cell Physiology | 2011

Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

Peter Sobolewski; Judith Kandel; Alexandra L. Klinger; David M. Eckmann

Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50-150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway.


PLOS ONE | 2012

Air bubble contact with endothelial cells causes a calcium-independent loss in mitochondrial membrane potential.

Peter Sobolewski; Judith Kandel; David M. Eckmann

Objective Gas microembolism remains a serious risk associated with surgical procedures and decompression. Despite this, the signaling consequences of air bubbles in the vasculature are poorly understood and there is a lack of pharmacological therapies available. Here, we investigate the mitochondrial consequences of air bubble contact with endothelial cells. Methods and Results Human umbilical vein endothelial cells were loaded with an intracellular calcium indicator (Fluo-4) and either a mitochondrial calcium indicator (X-Rhod-1) or mitochondrial membrane potential indicator (TMRM). Contact with 50–150 µm air bubbles induced concurrent rises in intracellular and mitochondrial calcium, followed by a loss of mitochondrial membrane potential. Pre-treating cells with 1 µmol/L ruthenium red, a TRPV family calcium channel blocker, did not protect cells from the mitochondrial depolarization, despite blocking the intracellular calcium response. Mitigating the interactions between the air-liquid interface and the endothelial surface layer with 5% BSA or 0.1% Pluronic F-127 prevented the loss of mitochondrial membrane potential. Finally, inhibiting protein kinase C-α (PKCα), with 5 µmol/L Gö6976, protected cells from mitochondrial depolarization, but did not affect the intracellular calcium response. Conclusions Our results indicate that air bubble contact with endothelial cells activates a novel, calcium-independent, PKCα-dependent signaling pathway, which results in mitochondrial depolarization. As a result, mitochondrial dysfunction is likely to be a key contributor to the pathophysiology of gas embolism injury. Further, this connection between the endothelial surface layer and endothelial mitochondria may also play an important role in vascular homeostasis and disease.


Biotechnology and Bioengineering | 2015

Automated detection of whole‐cell mitochondrial motility and its dependence on cytoarchitectural integrity

Judith Kandel; Philip Chou; David M. Eckmann

Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for “directed” motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012. Ann Biomed Eng 40:1903–1916) in order to characterize the distribution of mitochondrial movements at the whole‐cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust, and computationally inexpensive. Images are first pre‐processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole‐cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm for comparing mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993. J Cell Sci 104:917–927) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general. Biotechnol. Bioeng. 2015;112: 1395–1405.


Biosensors and Bioelectronics | 2014

Chemically grafted fibronectin for use in QCM-D cell studies.

Judith Kandel; Hyun-Su Lee; Peter Sobolewski; Nancy Tomczyk; Russell J. Composto; David M. Eckmann

Traditionally, fibronectin has been used as a physisorbed surface coating (physFN) in cell culture experiments due to its critical role in cell adhesion. However, because the resulting layer is thick, unstable, and of unpredictable uniformity, this method of fibronectin deposition is unsuitable for some types of research, including quartz crystal microbalance (QCM) experiments involving cells. Here, we present a new method for chemical immobilization of fibronectin onto silicon oxide surfaces, including QCM crystals pre-coated with silicon oxide. We characterize these chemically coated fibronectin surfaces (chemFN) as well as physFN ones using spectroscopic ellipsometry (SE), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle measurements. A cell culture model demonstrates that cells on chemFN and physFN surfaces exhibit similar viability, structure, adhesion and metabolism. Finally, we perform QCM experiments using cells on both surfaces which demonstrate the superior suitability of chemFN coatings for QCM research, and provide real-time QCM-D data from cells subjected to an actin depolymerizing agent. Overall, our method of chemical immobilization of fibronectin yields great potential for furthering cellular experiments in which thin, stable and uniform coatings are desirable. As QCM research with cells has been rather limited in success thus far, we anticipate that this new technique will particularly benefit this experimental system by availing it to the much broader field of cell mechanics.


Journal of Materials Chemistry B | 2013

Hemocompatibility of chitosan/poly(acrylic acid) grafted polyurethane tubing

Hyun-Su Lee; Nancy Tomczyk; Judith Kandel; Russell J. Composto; David M. Eckmann

The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces.


Integrative Biology | 2016

Mitochondrial respiration is sensitive to cytoarchitectural breakdown

Judith Kandel; Alessia Angelin; Douglas C. Wallace; David M. Eckmann

An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.


Journal of the Royal Society Interface | 2017

Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics

Judith Kandel; Martin Picard; Douglas C. Wallace; David M. Eckmann

Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions.


Experimental Biology and Medicine | 2014

Pefluorocarbon inhibition of bubble induced Ca2+ transients in an in vitro model of vascular gas embolism

Alexandra L. Klinger; Judith Kandel; Benjamin Pichette; David M. Eckmann

Endothelial injury resulting from deleterious interaction of gas microbubbles occurs in many surgical procedures and other medical interventions. The symptoms of vascular air embolism (VAE), while serious, are often difficult to detect, and there are essentially no pharmaceutical preventative or post-event treatments currently available. Perfluorocarbons (PFCs), however, have shown particular promise as a therapeutic option in reducing endothelial injury both in- and ex-vivo. Recently, we demonstrated the effectiveness of Oxycyte, a third-generation PFC formulated in a phosphotidylcholine emulsion, using an in vitro model of VAE developed in our laboratory. This apparatus allows live cell imaging concurrent with precise manipulation of physiologically sized microbubbles so that they may be brought into individual contact with human umbilical vein endothelial cells dye-loaded with the Ca2+ sensitive Fluo-4. Herein, we expand use of this fluorescence microscopy-based cell culture model. Specifically, we examined the concentration dependence of Oxycyte in reducing both the amplitude and frequency of large intracellular Ca2+ currents that are both a hallmark of bubble contact and a quantifiable indication that abnormal intracellular signaling has been triggered. We measured dose dependence curves and fit the resultant data using a modified Black and Leff operational model of agonism. The half maximal inhibitory concentrations of Oxycyte for (i) inhibition of occurrence and (ii) amplitude reduction were 229 ± 49 µM and 226 ± 167 µM, respectively. This investigation shows the preferential gas/liquid interface occupancy of the PFC component of Oxycyte over that of mechanosensing glycocalyx components and validates Oxycyte’s specific surfactant mechanism of action. Further, no lethality was observed for any concentration of this bioinert PFC, as it acts as a competitive allosteric inhibitor of syndecan activation to ameliorate cell response to bubble contact.


European Journal of Paediatric Neurology | 2017

Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal infantile encephalopathy

Ortal Barel; May Christine V. Malicdan; Bruria Ben-Zeev; Judith Kandel; Hadass Pri-Chen; Joshi Stephen; Inês G. Castro; Jeremy Metz; Osama Atawa; Sharon Moshkovitz; Esther Ganelin; Iris Barshack; Sylvie Polak-Charcon; Dvora Nass; Dina Marek-Yagel; Ninette Amariglio; Nechama Shalva; Thierry Vilboux; Carlos R. Ferreira; Ben Pode-Shakked; Gali Heimer; Chen Hoffmann; Tal Yardeni; Andreea Nissenkorn; Camila Avivi; Eran Eyal; Nitzan Kol; Efrat Glick Saar; Douglas C. Wallace; William A. Gahl


Biophysical Journal | 2013

Air Bubble Contact with Endothelial Cells Causes a Calcium-Independent Loss in Mitochondrial Membrane Potential

Peter Sobolewski; Judith Kandel; David M. Eckmann

Collaboration


Dive into the Judith Kandel's collaboration.

Top Co-Authors

Avatar

David M. Eckmann

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Peter Sobolewski

West Pomeranian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas C. Wallace

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun-Su Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nancy Tomczyk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Philip Chou

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Angelin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Benjamin Pichette

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge