Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith M. E. M. Cosemans is active.

Publication


Featured researches published by Judith M. E. M. Cosemans.


Blood | 2009

Dual role of collagen in factor XII–dependent thrombus formation

Paola E. J. van der Meijden; Imke C. A. Munnix; Jocelyn M. Auger; José W. P. Govers-Riemslag; Judith M. E. M. Cosemans; M. J. E. Kuijpers; Henri M.H. Spronk; Steve P. Watson; Thomas Renné; Johan W. M. Heemskerk

In vivo mouse models have indicated that the intrinsic coagulation pathway, initiated by factor XII, contributes to thrombus formation in response to major vascular damage. Here, we show that fibrillar type I collagen provoked a dose-dependent shortening of the clotting time of human plasma via activation of factor XII. This activation was mediated by factor XII binding to collagen. Factor XII activation also contributed to the stimulating effect of collagen on thrombin generation in plasma, and increased the effect of platelets via glycoprotein VI activation. Furthermore, in flow-dependent thrombus formation under coagulant conditions, collagen promoted the appearance of phosphatidylserine-exposing platelets and the formation of fibrin. Defective glycoprotein VI signaling (with platelets deficient in LAT or phospholipase Cgamma2) delayed and suppressed phosphatidylserine exposure and thrombus formation. Markedly, these processes were also suppressed by absence of factor XII or XI, whereas blocking of tissue factor/factor VIIa was of little effect. Together, these results point to a dual role of collagen in thrombus formation: stimulation of glycoprotein VI signaling via LAT and PLCgamma2 to form procoagulant platelets; and activation of factor XII to stimulate thrombin generation and potentiate the formation of platelet-fibrin thrombi.


Journal of Thrombosis and Haemostasis | 2013

Platelet-based coagulation: different populations, different functions

Johan W. M. Heemskerk; Nadine J.A. Mattheij; Judith M. E. M. Cosemans

Summary.  Platelets in a thrombus interact with (anti)coagulation factors and support blood coagulation. In the concept of cell‐based control of coagulation, three different roles of platelets can be distinguished: control of thrombin generation, support of fibrin formation, and regulation of fibrin clot retraction. Here, we postulate that different populations of platelets with distinct surface properties are involved in these coagulant functions. Platelets with elevated Ca2+ and exposed phosphatidylserine control thrombin and fibrin generation, while platelets with activated αIIbβ3 regulate clot retraction. We review how coagulation factor binding depends on the platelet activation state. Furthermore, we discuss the ligands, platelet receptors and downstream intracellular signaling pathways implicated in these coagulant functions. These insights lead to an adapted model of platelet‐based coagulation.


Journal of Clinical Investigation | 2009

PKCα regulates platelet granule secretion and thrombus formation in mice

Olga Konopatskaya; Karen Gilio; Matthew T. Harper; Yan Zhao; Judith M. E. M. Cosemans; Zubair A. Karim; Sidney W. Whiteheart; Jeffery D. Molkentin; Paul Verkade; Steve P. Watson; Johan W. M. Heemskerk; Alastair W. Poole

Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.


Thrombosis and Haemostasis | 2009

Platelet response heterogeneity in thrombus formation

Imke C. A. Munnix; Judith M. E. M. Cosemans; Jocelyn M. Auger; Johan W. M. Heemskerk

Vascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions. Contraction of platelets and interaction with fibrin and other blood cells cause further response variation. On the other hand, response heterogeneity can also be due to intrinsic differences between platelets in age and in receptor and signalling proteins. As a result, at least three subpopulations of platelets are formed in a thrombus: aggregating platelets with (reversible) integrin activation, procoagulant (coated) platelets exposing phosphatidylserine and binding coagulation factors, and contracting platelets with cell-cell contacts. This recognition of thrombus heterogeneity has implications for the use and development of antiplatelet medication.


Journal of Biological Chemistry | 2009

Non-redundant Roles of Phosphoinositide 3-Kinase Isoforms α and β in Glycoprotein VI-induced Platelet Signaling and Thrombus Formation

Karen Gilio; Imke C. A. Munnix; Pierre Mangin; Judith M. E. M. Cosemans; Marion A. H. Feijge; Paola E. J. van der Meijden; Servé Olieslagers; Magdalena Chrzanowska-Wodnicka; Rivka Lillian; Simone M. Schoenwaelder; Shigeo Koyasu; Stewart O. Sage; Shaun P. Jackson; Johan W. M. Heemskerk

Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cγ2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kα or -β strongly and selectively suppressed GPVI-induced Ca2+ mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cγ2 by PI3Kα/β. That PI3Kα and -β have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca2+ increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kα/β was blocked or p85α was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kδ or -γ. Furthermore, PI3Kα/β, but not PI3Kγ, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kα and -β isoforms are required for full GPVI-dependent platelet Ca2+ signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kα an interesting new target for anti-platelet therapy.


Nature Communications | 2014

Identification of platelet function defects by multi-parameter assessment of thrombus formation

Susanne de Witt; Frauke Swieringa; Rachel Cavill; Moniek M. E. Lamers; Roger van Kruchten; Tom G. Mastenbroek; Constance C. F. M. J. Baaten; Susan Coort; Nicholas Pugh; Ansgar Schulz; I. Scharrer; Kerstin Jurk; Barbara Zieger; Kenneth J. Clemetson; Richard W. Farndale; Johan W. M. Heemskerk; Judith M. E. M. Cosemans

Assays measuring platelet aggregation (thrombus formation) at arterial shear rate mostly use collagen as only platelet-adhesive surface. Here we report a multi-surface and multi-parameter flow assay to characterize thrombus formation in whole blood from healthy subjects and patients with platelet function deficiencies. A systematic comparison is made of 52 adhesive surfaces with components activating the main platelet-adhesive receptors, and of eight output parameters reflecting distinct stages of thrombus formation. Three types of thrombus formation can be identified with a predicted hierarchy of the following receptors: glycoprotein (GP)VI, C-type lectin-like receptor-2 (CLEC-2)>GPIb>α6β1, αIIbβ3>α2β1>CD36, α5β1, αvβ3. Application with patient blood reveals distinct abnormalities in thrombus formation in patients with severe combined immune deficiency, Glanzmann’s thrombasthenia, Hermansky–Pudlak syndrome, May–Hegglin anomaly or grey platelet syndrome. We suggest this test may be useful for the diagnosis of patients with suspected bleeding disorders or a pro-thrombotic tendency.


Journal of Biological Chemistry | 2010

Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen

Karen Gilio; Matthew T. Harper; Judith M. E. M. Cosemans; Olga Konopatskaya; Imke C. A. Munnix; Lenneke Prinzen; Michael Leitges; Qinghang Liu; Jeffery D. Molkentin; Johan W. M. Heemskerk; Alastair W. Poole

Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.


Platelets | 2012

Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide

Roger van Kruchten; Judith M. E. M. Cosemans; Johan W. M. Heemskerk

Custom-made and commercial parallel-plate flow chambers are widely used for studies of platelet activation and thrombus formation in whole blood at defined shear rates. When used in a reproducible way, such flow chamber devices give valuable information on the thrombogenic potential of human, mouse, or rat blood. This article aims to provide a practical guide for the use of parallel-plate flow chambers in combination with routine microscopic imaging techniques. The following methodological aspects are addressed: preparation of surface coatings, calculation of blood flow and shear rate, control of pre-analytical variables, protocols for routine performing of flow chamber tests with non-coagulating or coagulating blood, and procedures for real-time and end-point analysis of thrombus formation. Frequently encountered experimental problems and artifacts are discussed, as well as possibilities for using flow chamber devices as a diagnostic tool to test antithrombotic medication.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Factor XII Regulates the Pathological Process of Thrombus Formation on Ruptured Plaques

Marijke J.E. Kuijpers; Paola E. J. van der Meijden; Marion A. H. Feijge; Nadine J.A. Mattheij; Frauke May; José W. P. Govers-Riemslag; Joost C. M. Meijers; Johan W. M. Heemskerk; Thomas Renné; Judith M. E. M. Cosemans

Objective— Atherothrombosis is the main cause of myocardial infarction and ischemic stroke. Although the extrinsic (tissue factor–factor VIIa [FVIIa]) pathway is considered as a major trigger of coagulation in atherothrombosis, the role of the intrinsic coagulation pathway via coagulation FXII herein is unknown. Here, we studied the roles of the extrinsic and intrinsic coagulation pathways in thrombus formation on atherosclerotic plaques both in vivo and ex vivo. Approach and Results— Plaque rupture after ultrasound treatment evoked immediate formation of subocclusive thrombi in the carotid arteries of Apoe −/− mice, which became unstable in the presence of structurally different FXIIa inhibitors. In contrast, inhibition of FVIIa reduced thrombus size at a more initial stage without affecting embolization. Genetic deficiency in FXII (human and mouse) or FXI (mouse) reduced ex vivo whole-blood thrombus and fibrin formation on immobilized plaque homogenates. Localization studies by confocal microscopy indicated that FXIIa bound to thrombi and fibrin particularly in luminal-exposed thrombus areas. Conclusions— The FVIIa- and FXIIa-triggered coagulation pathways have distinct but complementary roles in atherothrombus formation. The tissue factor–FVIIa pathway contributes to initial thrombus buildup, whereas FXIIa bound to thrombi ensures thrombus stability.


Journal of Thrombosis and Haemostasis | 2010

Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization

Judith M. E. M. Cosemans; R. van Kruchten; S. Olieslagers; Leon J. Schurgers; F. K. Verheyen; Imke C. A. Munnix; J. Waltenberger; Anne Angelillo-Scherrer; Marc Hoylaerts; Peter Carmeliet; Johan W. M. Heemskerk

Summary.  Background: Interaction of murine Gas6 with the platelet Gas6 receptors Tyro3, Axl and Mer (TAM) plays an important role in arterial thrombus formation. However, a role for Gas6 in human platelet activation has been questioned. Objective: To determine the role of Gas6 in human and murine platelet activation and thrombus formation. Methods and Results: Gas6 levels appeared to be 20‐fold higher in human plasma than in platelets, suggesting a predominant role of plasma‐derived Gas6. Human Gas6 synergizes with ADP–P2Y12 by enhancing and prolonging the phosphorylation of Akt. Removal of Gas6 from plasma impaired ADP‐induced platelet aggregation. Under flow conditions, absence of human Gas6 provoked gradual platelet disaggregation and integrin αIIbβ3 inactivation. Recombinant human Gas6 reversed the effects of Gas6 removal. In mouse blood, deficiency in Gas6 or in one of the TAM receptors led to reduced thrombus formation and increased disaggregation, which was completely antagonized by external ADP. In contrast, collagen‐induced platelet responses were unchanged by the absence of Gas6 in both human and mouse systems. Conclusions: The ADP–P2Y12 and Gas6–TAM activation pathways synergize to achieve persistent αIIbβ3 activation and platelet aggregation. We postulate a model of thrombus stabilization in which plasma Gas6, by signaling via the TAM receptors, extends and enhances the platelet‐stabilizing effect of autocrine ADP, particularly when secretion becomes limited.

Collaboration


Dive into the Judith M. E. M. Cosemans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge