Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Mantell is active.

Publication


Featured researches published by Judith Mantell.


Science | 2013

Self-assembling cages from coiled-coil peptide modules

Jordan M. Fletcher; Robert L. Harniman; Frederick R. H. Barnes; Aimee L. Boyle; Andrew M. Collins; Judith Mantell; Thomas H. Sharp; Massimo Antognozzi; Paula J. Booth; Noah Linden; Mervyn J Miles; Richard B. Sessions; Paul Verkade; Derek N. Woolfson

From Coils to Cages Self-assembly strategies that mimic protein assembly, such as the formation of viral coats, often begin with simpler peptide assemblies. Fletcher et al. (p. 595, published online 11 April; see the Perspective by Ardejani and Orner) designed two coiled-coil peptide motifs, a heterodimer, and a homotrimer. Both peptides contained cysteine residues and could link through disulfide bonds, so that the trimer could form the vertices of a hexagonal network and the dimer its edges. However, these components are flexible and, rather than form extended sheets, they closed to form particles ∼100 nanometers in diameter. Hexagonal networks form from heterodimeric and homotrimeric coiled coils and create ~100-nanometer-diameter cages. [Also see Perspective by Ardejani and Orner] An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.


Nature | 2015

ESCRT-III controls nuclear envelope reformation

Yolanda Olmos; Lorna Hodgson; Judith Mantell; Paul Verkade; Jeremy G. Carlton

During telophase, the nuclear envelope (NE) reforms around daughter nuclei to ensure proper segregation of nuclear and cytoplasmic contents. NE reformation requires the coating of chromatin by membrane derived from the endoplasmic reticulum, and a subsequent annular fusion step to ensure that the formed envelope is sealed. How annular fusion is accomplished is unknown, but it is thought to involve the p97 AAA-ATPase complex and bears a topological equivalence to the membrane fusion event that occurs during the abscission phase of cytokinesis. Here we show that the endosomal sorting complex required for transport-III (ESCRT-III) machinery localizes to sites of annular fusion in the forming NE in human cells, and is necessary for proper post-mitotic nucleo-cytoplasmic compartmentalization. The ESCRT-III component charged multivesicular body protein 2A (CHMP2A) is directed to the forming NE through binding to CHMP4B, and provides an activity essential for NE reformation. Localization also requires the p97 complex member ubiquitin fusion and degradation 1 (UFD1). Our results describe a novel role for the ESCRT machinery in cell division and demonstrate a conservation of the machineries involved in topologically equivalent mitotic membrane remodelling events.


Journal of Cell Science | 2009

Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER

Helen Hughes; Annika Budnik; Katy Schmidt; Krysten J. Palmer; Judith Mantell; Chris Noakes; Andrew Johnson; Deborah A. Carter; Paul Verkade; Peter Duncan Watson; David Stephens

The COPII complex mediates the selective incorporation of secretory cargo and relevant machinery into budding vesicles at specialised sites on the endoplasmic reticulum membrane called transitional ER (tER). Here, we show using confocal microscopy, immunogold labelling of ultrathin cryosections and electron tomography that in human cells at steady state, Sec16 localises to cup-like structures of tER that are spatially distinct from the localisation of other COPII coat components. We show that Sec16 defines the tER, whereas Sec23-Sec24 and Sec13-Sec31 define later structures that precede but are distinct from the intermediate compartment. Steady-state localisation of Sec16 is independent of the localisation of downstream COPII components Sec23-Sec24 and Sec13-Sec31. Sec16 cycles on and off the membrane at a slower rate than other COPII components with a greater immobile fraction. We define the region of Sec16A that dictates its robust localisation of tER membranes and find that this requires both a highly charged region as well as a central domain that shows high sequence identity between species. The central conserved domain of Sec16 binds to Sec13 linking tER membrane localisation with COPII vesicle formation. These data are consistent with a model where Sec16 acts as a platform for COPII assembly at ERES.


Cell Host & Microbe | 2012

Mucosal Reactive Oxygen Species Decrease Virulence by Disrupting Campylobacter jejuni Phosphotyrosine Signaling

Nicolae Corcionivoschi; Luis Alvarez; Thomas H. Sharp; Monika Strengert; Abofu Alemka; Judith Mantell; Paul Verkade; Ulla G. Knaus; Billy Bourke

Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling.


Seminars in Cell & Developmental Biology | 2009

Studying intracellular transport using high-pressure freezing and Correlative Light Electron Microscopy.

Edward B. Brown; Judith Mantell; Debbie Carter; Gini Tilly; Paul Verkade

Correlative Light Electron Microscopy (CLEM) aims at combining the best of light and electron microscopy in one experiment. Light microscopy (LM) is especially suited for providing a general overview with data from lots of different cells and by using live cell imaging it can show the history or sequence of events between or inside cells. Electron microscopy (EM) on the other hand can provide a much higher resolution image of a particular event and provide additional spatial information, the so-called reference space. CLEM thus has certain strengths over the application of both LM and EM techniques separately. But combining both modalities however generally also means making compromises in one or both of the techniques. Most often the preservation of ultrastructure for the electron microscopy part is sacrificed. Ideally samples should be visualized in its most native state both in the light microscope as well as the electron microscope. For electron microscopy this currently means that the sample will have to be cryo-fixed instead of the standard chemical fixation. In this paper we will discuss the rationale for using cryofixation for CLEM experiments. In particular we will highlight a CLEM technique using high-pressure freezing in combination with live cell imaging. In addition we examine some of the EM analysis tools that may be useful in combination with CLEM techniques.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design

Thomas H. Sharp; Marc Bruning; Judith Mantell; Richard B. Sessions; Andrew R. Thomson; Nathan R. Zaccai; R L Brady; Paul Verkade; Dek Woolfson

Nature presents various protein fibers that bridge the nanometer to micrometer regimes. These structures provide inspiration for the de novo design of biomimetic assemblies, both to address difficulties in studying and understanding natural systems, and to provide routes to new biomaterials with potential applications in nanotechnology and medicine. We have designed a self-assembling fiber system, the SAFs, in which two small α-helical peptides are programmed to form a dimeric coiled coil and assemble in a controlled manner. The resulting fibers are tens of nm wide and tens of μm long, and, therefore, comprise millions of peptides to give gigadalton supramolecular structures. Here, we describe the structure of the SAFs determined to approximately 8 Å resolution using cryotransmission electron microscopy. Individual micrographs show clear ultrastructure that allowed direct interpretation of the packing of individual α-helices within the fibers, and the construction of a 3D electron density map. Furthermore, a model was derived using the cryotransmission electron microscopy data and side chains taken from a 2.3 Å X-ray crystal structure of a peptide building block incapable of forming fibers. This was validated using single-particle analysis techniques, and was stable in prolonged molecular-dynamics simulation, confirming its structural viability. The level of self-assembly and self-organization in the SAFs is unprecedented for a designed peptide-based material, particularly for a system of considerably reduced complexity compared with natural proteins. This structural insight is a unique high-resolution description of how α-helical fibrils pack into larger protein fibers, and provides a basis for the design and engineering of future biomaterials.


Methods in Cell Biology | 2010

Intracellular membrane traffic at high resolution

Jan R.T. van Weering; Edward J. Brown; Thomas H. Sharp; Judith Mantell; Peter J. Cullen; Paul Verkade

Membrane traffic between organelles is essential for a multitude of processes that maintain cell homeostasis. Many steps in these tightly regulated trafficking pathways take place in microdomains on the membranes of organelles, which require analysis at nanometer resolution. Electron microscopy (EM) can visualize these processes in detail and is mainly responsible for our current view of morphology on the subcellular level. This review discusses how EM can be applied to solve many questions of intracellular membrane traffic, with a focus on the endosomal system. We describe the expansion of the technique from purely morphological analysis to cryo-immuno-EM, correlative light electron microscopy (CLEM), and 3D electron tomography. In this review we go into some technical details of these various techniques. Furthermore, we provide a full protocol for immunolabeling on Lowicryl sections of high-pressure frozen cells as well as a detailed description of a simple CLEM method that can be applied to answer many membrane trafficking questions. We believe that these EM-based techniques are important tools to expand our understanding of the molecular details of endosomal sorting and intracellular membrane traffic in general.


Mbio | 2013

Infectious Bronchitis Virus Generates Spherules from Zippered Endoplasmic Reticulum Membranes

Helena J. Maier; Philippa Hawes; Eleanor M. Cottam; Judith Mantell; Paul Verkade; Paul Monaghan; Thomas Wileman; Paul Britton

ABSTRACT Replication of positive-sense RNA viruses is associated with the rearrangement of cellular membranes. Previous work on the infection of tissue culture cell lines with the betacoronaviruses mouse hepatitis virus and severe acute respiratory syndrome coronavirus (SARS-CoV) showed that they generate double-membrane vesicles (DMVs) and convoluted membranes as part of a reticular membrane network. Here we describe a detailed study of the membrane rearrangements induced by the avian gammacoronavirus infectious bronchitis virus (IBV) in a mammalian cell line but also in primary avian cells and in epithelial cells of ex vivo tracheal organ cultures. In all cell types, structures novel to IBV infection were identified that we have termed zippered endoplasmic reticulum (ER) and spherules. Zippered ER lacked luminal space, suggesting zippering of ER cisternae, while spherules appeared as uniform invaginations of zippered ER. Electron tomography showed that IBV-induced spherules are tethered to the zippered ER and that there is a channel connecting the interior of the spherule with the cytoplasm, a feature thought to be necessary for sites of RNA synthesis but not seen previously for membrane rearrangements induced by coronaviruses. We also identified DMVs in IBV-infected cells that were observed as single individual DMVs or were connected to the ER via their outer membrane but not to the zippered ER. Interestingly, IBV-induced spherules strongly resemble confirmed sites of RNA synthesis for alphaviruses, nodaviruses, and bromoviruses, which may indicate similar strategies of IBV and these diverse viruses for the assembly of RNA replication complexes. IMPORTANCE All positive-sense single-stranded RNA viruses induce rearranged cellular membranes, providing a platform for viral replication complex assembly and protecting viral RNA from cellular defenses. We have studied the membrane rearrangements induced by an important poultry pathogen, the gammacoronavirus infectious bronchitis virus (IBV). Previous work studying closely related betacoronaviruses identified double-membrane vesicles (DMVs) and convoluted membranes (CMs) derived from the endoplasmic reticulum (ER) in infected cells. However, the role of DMVs and CMs in viral RNA synthesis remains unclear because these sealed vesicles lack a means of delivering viral RNA to the cytoplasm. Here, we characterized structures novel to IBV infection: zippered ER and small vesicles tethered to the zippered ER termed spherules. Significantly, spherules contain a channel connecting their interior to the cytoplasm and strongly resemble confirmed sites of RNA synthesis for other positive-sense RNA viruses, making them ideal candidates for the site of IBV RNA synthesis. All positive-sense single-stranded RNA viruses induce rearranged cellular membranes, providing a platform for viral replication complex assembly and protecting viral RNA from cellular defenses. We have studied the membrane rearrangements induced by an important poultry pathogen, the gammacoronavirus infectious bronchitis virus (IBV). Previous work studying closely related betacoronaviruses identified double-membrane vesicles (DMVs) and convoluted membranes (CMs) derived from the endoplasmic reticulum (ER) in infected cells. However, the role of DMVs and CMs in viral RNA synthesis remains unclear because these sealed vesicles lack a means of delivering viral RNA to the cytoplasm. Here, we characterized structures novel to IBV infection: zippered ER and small vesicles tethered to the zippered ER termed spherules. Significantly, spherules contain a channel connecting their interior to the cytoplasm and strongly resemble confirmed sites of RNA synthesis for other positive-sense RNA viruses, making them ideal candidates for the site of IBV RNA synthesis.


Angewandte Chemie | 2014

Lactose as a “Trojan Horse” for Quantum Dot Cell Transport

David Benito-Alifonso; Shirley Tremel; Bo Hou; Harriet Lockyear; Judith Mantell; David J. Fermín; Paul Verkade; Monica Berry; M. Carmen Galan

A series of glycan-coated quantum dots were prepared to probe the effect of glycan presentation in intracellular localization in HeLa and SV40 epithelial cells. We show that glycan density mostly impacts on cell toxicity, whereas glycan type affects the cell uptake and intracellular localization. Moreover, we show that lactose can act as a “Trojan horse” on bi-functionalized QDs to help intracellular delivery of other non-internalizable glycan moieties and largely avoid the endosomal/lysosomal degradative pathway.


Microcirculation | 2012

3D Reconstruction of the Glycocalyx Structure in Mammalian Capillaries using Electron Tomography

Kenton P. Arkill; Christopher R. Neal; Judith Mantell; C. C. Michel; Klaus Qvortrup; J. Rostgaard; D. O. Bates; Carlo Knupp; John M. Squire

Please cite this paper as: Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19: 343–351, 2012.

Collaboration


Dive into the Judith Mantell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Nam

University of Bristol

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Sharp

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge