Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith P. Armitage is active.

Publication


Featured researches published by Judith P. Armitage.


Nature Reviews Molecular Cell Biology | 2004

MAKING SENSE OF IT ALL: BACTERIAL CHEMOTAXIS

George H. Wadhams; Judith P. Armitage

Bacteria must be able to respond to a changing environment, and one way to respond is to move. The transduction of sensory signals alters the concentration of small phosphorylated response regulators that bind to the rotary flagellar motor and cause switching. This simple pathway has provided a paradigm for sensory systems in general. However, the increasing number of sequenced bacterial genomes shows that although the central sensory mechanism seems to be common to all bacteria, there is added complexity in a wide range of species.


Nature | 2006

Stoichiometry and turnover in single, functioning membrane protein complexes

Mark C. Leake; Jennifer H. Chandler; George H. Wadhams; Fan Bai; Richard M. Berry; Judith P. Armitage

Many essential cellular processes are carried out by complex biological machines located in the cell membrane. The bacterial flagellar motor is a large membrane-spanning protein complex that functions as an ion-driven rotary motor to propel cells through liquid media. Within the motor, MotB is a component of the stator that couples ion flow to torque generation and anchors the stator to the cell wall. Here we have investigated the protein stoichiometry, dynamics and turnover of MotB with single-molecule precision in functioning bacterial flagellar motors in Escherichia coli. We monitored motor function by rotation of a tethered cell body, and simultaneously measured the number and dynamics of MotB molecules labelled with green fluorescent protein (GFP–MotB) in the motor by total internal reflection fluorescence microscopy. Counting fluorophores by the stepwise photobleaching of single GFP molecules showed that each motor contains ∼22 copies of GFP–MotB, consistent with ∼11 stators each containing two MotB molecules. We also observed a membrane pool of ∼200 GFP–MotB molecules diffusing at ∼0.008 µm2 s-1. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed turnover of GFP–MotB between the membrane pool and motor with a rate constant of the order of 0.04 s-1: the dwell time of a given stator in the motor is only ∼0.5 min. This is the first direct measurement of the number and rapid turnover of protein subunits within a functioning molecular machine.


Nature Reviews Microbiology | 2011

Signal processing in complex chemotaxis pathways

Steven L. Porter; George H. Wadhams; Judith P. Armitage

Bacteria use chemotaxis to migrate towards environments that are better for growth. Chemoreceptors detect changes in attractant levels and signal through two-component systems to control swimming direction. This basic pathway is conserved across all chemotactic bacteria and archaea; however, recent work combining systems biology and genome sequencing has started to elucidate the additional complexity of the process in many bacterial species. This article focuses on one of the best understood complex networks, which is found in Rhodobacter sphaeroides and integrates sensory data about the external environment and the metabolic state of the cell to produce a balanced response at the flagellar motor.


Advances in Microbial Physiology | 1999

Bacterial Tactic Responses

Judith P. Armitage

Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a histidine protein kinase, CheA, via a linker protein, CheW. A reduction in an attractant generally leads to the increased autophosphorylation of CheA. CheA passes its phosphate to a small, single domain response regulator, CheY. CheY-P can interact with the flagellar motor to cause it to change rotational direction or stop. Signal termination either via a protein, CheZ, which increases the dephosphorylation rate of CheY-P or via a second CheY which acts as a phosphate sink, allows the cell to swim off again, usually in a new direction. In addition to signal termination the receptor must be reset, and this occurs via methylation of the receptor to return it to a non-signalling conformation. The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review.


Bulletin of Mathematical Biology | 2008

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations

Marcus J. Tindall; Philip K. Maini; Steven L. Porter; Judith P. Armitage

We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.


Microbiology | 1997

Bacterial chemotaxis : Rhodobacter sphaeroides and Sinorhizobium meliloti - variations on a theme ?

Judith P. Armitage; Rüdiger Schmitt

We are only beginning to understand the mechanisms involved in tactic sensing in the alpha-subgroup of bacteria. It is clear, however, from recent developments that although the central chemosensory pathways are related to those identified in enteric species, the primary signals and the effect on flagellar behaviour are very different. The expression of chemoreceptors is under environmental control, and the strength of a response depends on the metabolic state of the cell. This is very different from enteric species which always respond to MCP-dependent chemoeffectors, and in which the expression of the receptors is constitutive. Chemotaxis in R. sphaeroides and S. meliloti is therefore more directly linked to the environment in which a cell finds itself. The integration of chemosensory pathways dependent on growth state may be much more suited to the fluctuating environment of these soil and water bacteria. There is still a great deal that needs to be understood about the mechanisms involved in motor control. The presence of at least two CheY homologues and the finding that the swimming speed of these bacteria can vary, and, in the case of S. meliloti, vary with chemosensory stimulation, suggests a different control mechanism at the flagellar motor where speed can be altered, or the motor stopped, with a full delta p still present. Why R. sphaeroides should have at least two functional sets of genes encoding homologues of the enteric chemosensory pathway remains to be determined. The major differences in sensory behaviour between the two alpha-subgroup species so far studied in detail and the differences from the enteric species suggests that many more variations of the chemosensory pathways will be found as more species are studied.


Photosynthesis Research | 2001

The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1.

Chris Mackenzie; Madhusudan Choudhary; Frank W. Larimer; Paul Predki; Stephanie Stilwagen; Judith P. Armitage; Robert D. Barber; Timothy J. Donohue; Jonathan P. Hosler; Jack E. Newman; James P. Shapleigh; R. Elizabeth Sockett; Jill H. Zeilstra-Ryalls; Samuel Kaplan

Rhodobacter sphaeroides 2.4.1 is an α-3 purple nonsulfur eubacterium with an extensive metabolic repertoire. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. Photosynthesis may be photoheterotrophic using organic compounds as both a carbon and a reducing source, or photoautotrophic using carbon dioxide as the sole carbon source and hydrogen as the source of reducing power. In addition, R. sphaeroides can grow both chemoheterotrophically and chemoautotrophically. The structural components of this metabolically diverse organism and their modes of integrated regulation are encoded by a genome of ∼4.5 Mb in size. The genome comprises two chromosomes CI and CII (2.9 and 0.9 Mb, respectively) and five other replicons. Sequencing of the genome has been carried out by two groups, the Joint Genome Institute, which carried out shotgun-sequencing of the entire genome and The University of Texas-Houston Medical School, which carried out a targeted sequencing strategy of CII. Here we describe our current understanding of the genome when data from both of these groups are combined. Previous work had suggested that the two chromosomes are equal partners sharing responsibilities for fundamental cellular processes. This view has been reinforced by our preliminary analysis of the virtually completed genome sequence. We also have some evidence to suggest that two of the plasmids, pRS241a and pRS241b encode chromosomal type functions and their role may be more than that of accessory elements, perhaps representing replicons in a transition state.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Signal-dependent turnover of the bacterial flagellar switch protein FliM

Nicolas J. Delalez; George H. Wadhams; Gabriel Rosser; Quan Xue; Mostyn T. Brown; Ian M. Dobbie; Richard M. Berry; Mark C. Leake; Judith P. Armitage

Most biological processes are performed by multiprotein complexes. Traditionally described as static entities, evidence is now emerging that their components can be highly dynamic, exchanging constantly with cellular pools. The bacterial flagellar motor contains ∼13 different proteins and provides an ideal system to study functional molecular complexes. It is powered by transmembrane ion flux through a ring of stator complexes that push on a central rotor. The Escherichia coli motor switches direction stochastically in response to binding of the response regulator CheY to the rotor switch component FliM. Much is known of the static motor structure, but we are just beginning to understand the dynamics of its individual components. Here we measure the stoichiometry and turnover of FliM in functioning flagellar motors, by using high-resolution fluorescence microscopy of E. coli expressing genomically encoded YPet derivatives of FliM at physiological levels. We show that the ∼30 FliM molecules per motor exist in two discrete populations, one tightly associated with the motor and the other undergoing stochastic turnover. This turnover of FliM molecules depends on the presence of active CheY, suggesting a potential role in the process of motor switching. In many ways the bacterial flagellar motor is as an archetype macromolecular assembly, and our results may have further implications for the functional relevance of protein turnover in other large molecular complexes.


The EMBO Journal | 2010

Spatial organization in bacterial chemotaxis

Victor Sourjik; Judith P. Armitage

Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well‐documented examples of higher‐order intracellular signalling structures in bacteria. One of the most prominent and best‐characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris

Robert P. Ryan; Yvonne McCarthy; Maxuel O. Andrade; Chuck S. Farah; Judith P. Armitage; J. Maxwell Dow

RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell–cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG–GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.

Collaboration


Dive into the Judith P. Armitage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge