Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy Kahm is active.

Publication


Featured researches published by Judy Kahm.


American Journal of Pathology | 2010

Pathologic Caveolin-1 Regulation of PTEN in Idiopathic Pulmonary Fibrosis

Hong Xia; Wajahat Khalil; Judy Kahm; Jose Jessurun; Jill Kleidon; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disorder refractory to current pharmacological therapies. Fibroblasts isolated from IPF patients display pathological activation of PI3K/Akt caused by low PTEN phosphatase activity. This enables these cells to escape the negative proliferative properties of polymerized collagen. The mechanism underlying low PTEN activity in IPF fibroblasts is unclear, but our prior studies indicate that membrane-associated PTEN expression is decreased in these cells. Caveolin-1 is an integral membrane protein whose expression is decreased in IPF lung tissue, but how low caveolin-1 contributes to pathological fibrosis is incompletely understood. The objective of this study was to examine the hypothesis that caveolin-1 regulates PTEN function in IPF fibroblasts. Here we demonstrate that caveolin-1 expression is a determinant of membrane PTEN levels and show that PTEN interacts with caveolin-1 via its caveolin-1-binding sequence. We demonstrate that caveolin-1 expression is low in IPF fibroblasts and that this correlates with low membrane PTEN levels, whereas overexpression of caveolin-1 restores membrane PTEN levels, inhibits Akt phosphorylation, and suppresses proliferation. We demonstrate that caveolin-1 and PTEN expression are low in myofibroblasts within IPF fibroblastic foci. These data indicate that IPF fibroblasts display low caveolin-1 expression, which results in low membrane-associated PTEN expression. This creates a membrane microenvironment depleted of inhibitory phosphatase activity, facilitating the aberrant activation PI3K/Akt and pathological proliferation.


Journal of Biological Chemistry | 2006

PTEN Regulates Fibroblast Elimination during Collagen Matrix Contraction

Richard Seonghun Nho; Hong Xia; Deanna Diebold; Judy Kahm; Jill Kleidon; Eric S. White; Craig A. Henke

During tissue repair, excess fibroblasts are eliminated by apoptosis. This physiologic process limits fibrosis and restores normal anatomic patterns. Replicating physiologic apoptosis associated with tissue repair, fibroblasts incorporated into type I collagen matrices undergo apoptosis in response to collagen matrix contraction. In this in vitro model of wound repair, fibroblasts first attach to collagen via α2β1 integrin. This provides a survival signal via activation of the phosphatidylinositol 3-kinase/Akt signal pathway. However, during subsequent collagen matrix contraction, the level of phosphorylated Akt progressively declines, triggering apoptosis. The mechanism underlying the fall in phosphorylated Akt is incompletely understood. Here we show that PTEN phosphatase becomes activated during collagen matrix contraction and is responsible for antagonizing phosphatidylinositol 3-kinase activity and promoting a decline in phosphorylated Akt and fibroblast apoptosis in response to collagen contraction. PTEN null fibroblasts displayed enhanced levels of phosphorylated Akt and were resistant to collagen matrix contraction-induced apoptosis. Reconstitution of PTEN in PTEN null cells conferred susceptibility to apoptosis in response to contraction of collagen matrices. Consistent with this, knockdown of PTEN in PTEN+/+ embryonic fibroblasts by small interfering RNA augmented Akt activity and suppressed apoptosis in contractile collagen matrices. Furthermore, inhibition of Akt activity restored the sensitivity of PTEN null cells to collagen contraction-induced apoptosis, indicating that the mechanism by which PTEN alters fibroblast viability is through modulation of phosphorylated Akt levels. Our work suggests that collagen matrix contraction activates PTEN by a mechanism involving cytoskeletal disassembly. Our studies indicate a key role for PTEN in regulating fibroblast viability during tissue repair.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

miR-210 promotes IPF fibroblast proliferation in response to hypoxia.

Vidya Bodempudi; Polla Hergert; Karen Smith; Hong Xia; Jeremy Herrera; Mark Peterson; Wajahat Khalil; Judy Kahm; Peter B. Bitterman; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless spread of fibroblasts from scarred alveoli into adjacent alveolar units, resulting in progressive hypoxia and death by asphyxiation. Although hypoxia is a prominent clinical feature of IPF, the role of hypoxia as a driver of the progressive fibrotic nature of the disease has not been explored. Here, we demonstrate that hypoxia robustly stimulates the proliferation of IPF fibroblasts. We found that miR-210 expression markedly increases in IPF fibroblasts in response to hypoxia and that knockdown of miR-210 decreases hypoxia-induced IPF fibroblast proliferation. Silencing hypoxia-inducible factor (HIF)-2α inhibits the hypoxia-mediated increase in miR-210 expression and blocks IPF fibroblast proliferation, indicating that HIF-2α is upstream of miR-210. We demonstrate that the miR-210 downstream target MNT is repressed in hypoxic IPF fibroblasts and that knockdown of miR-210 increases MNT expression. Overexpression of MNT inhibits hypoxia-induced IPF fibroblast proliferation. Together, these data indicate that hypoxia potently stimulates miR-210 expression via HIF-2α, and high miR-210 expression drives fibroblast proliferation by repressing the c-myc inhibitor, MNT. In situ analysis of IPF lung tissue demonstrates miR-210 expression in a similar distribution with HIF-2α and the hypoxic marker carbonic anhydrase-IX in cells within the IPF fibrotic reticulum. Our results raise the possibility that a pathological feed-forward loop exists in the IPF lung, in which hypoxia promotes IPF fibroblast proliferation via stimulation of miR-210 expression, which in turn worsens hypoxia.


American Journal of Pathology | 2012

Low α2β1 Integrin Function Enhances the Proliferation of Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis by Activation of the β-Catenin Pathway

Hong Xia; Jeremy Seeman; Jian Hong; Polla Hergert; Jose Jessurun; Karen Smith; Richard Seonghun Nho; Judy Kahm; Philippe Gaillard; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable fibroproliferative disorder characterized by unrelenting proliferation of fibroblasts and their deposition of collagen within alveoli, resulting in permanently scarred, nonfunctional airspaces. Normally, polymerized collagen suppresses fibroblast proliferation and serves as a physiological restraint to limit fibroproliferation after tissue injury. The IPF fibroblast, however, is a pathologically altered cell that has acquired the capacity to elude the proliferation-suppressive effects of polymerized collagen. The mechanism for this phenomenon remains incompletely understood. Here, we demonstrate that expression of α(2)β(1) integrin, a major collagen receptor, is pathologically low in IPF fibroblasts interacting with polymerized collagen. Low integrin expression in IPF fibroblasts is associated with a failure to induce PP2A phosphatase activity, resulting in abnormally high levels of phosphorylated (inactive) GSK-3β and high levels of active β-catenin in the nucleus. Knockdown of β-catenin in IPF fibroblasts inhibits their ability to proliferate on collagen. Interdiction of α(2)β(1) integrin in control fibroblasts reproduces the IPF phenotype and leads to the inability of these cells to activate PP2A, resulting in high levels of phosphorylated GSK-3β and active β-catenin and in enhanced proliferation on collagen. Our findings indicate that the IPF fibroblast phenotype is characterized by low α(2)β(1) integrin expression, resulting in a failure of integrin to activate PP2A phosphatase, which permits inappropriate activation of the β-catenin pathway.


Journal of Biological Chemistry | 2010

β1-Integrin-Collagen Interaction Suppresses FoxO3a by the Coordination of Akt and PP2A

Richard Seonghun Nho; Judy Kahm

When cells attach to the extracellular matrix (ECM) a proliferation permissive signal is engaged. The mechanism involves activation of the integrin/PI3K/Akt signal pathway. FoxO3a is a transcriptional activator and inhibits cell proliferation via up-regulating the expression of the cell cycle inhibitor p27. Furthermore, it is known that activated Akt can suppress FoxO3a function. However, it is not known whether integrin interaction with the ECM regulates FoxO3a function. We examined whether the β1-integrin-mediated signaling pathway promotes fibroblast proliferation via FoxO3a suppression. We found that when fibroblasts are attached to collagen, PTEN protein expression and activity are inhibited due to promotion of PTEN degradation. This decrease in PTEN function permits FoxO3a suppression via the PI3K/Akt pathway. In contrast, the inhibition of PI3K/Akt or reconstitution of PTEN restores FoxO3a expression on collagen. Furthermore, we found that the serine/threonine phosphatase PP2A also regulates FoxO3a. PP2A expression/activity is low when fibroblasts are attached to collagen, and PP2A overexpression augments FoxO3a levels. Thus the mechanism involves a coordinated decrease in PTEN and PP2A phosphatase activity and increase in PI3K/Akt activity. We show that β1-integrin-ECM interaction decreases FoxO3a protein levels via caspase-3-mediated cleavage. Our novel finding indicates that during fibroblast interaction with ECM, activation of β1-integrin/PI3K/Akt by inhibiting PTEN in combination with low PP2A phosphatase activity synergistically inhibits FoxO3a, promoting fibroblast proliferation.


Journal of Biological Chemistry | 2008

Polymerized Collagen Inhibits Fibroblast Proliferation via a Mechanism Involving the Formation of a β1 Integrin-Protein Phosphatase 2A-Tuberous Sclerosis Complex 2 Complex That Suppresses S6K1 Activity

Hong Xia; Richard Seonghun Nho; Jill Kleidon; Judy Kahm; Craig A. Henke

Polymerized type I collagen suppresses fibroblast proliferation. Previous studies have implicated inhibition of fibroblast proliferation with polymerized collagen-mediated suppression of S6K1, but the molecular mechanism of the critical negative feedback loop has not yet been fully elucidated. Here, we demonstrate that polymerized collagen suppresses G1/S phase transition and fibroblast proliferation by a novel mechanism involving the formation of a β1 integrin-protein phosphatase 2A (PP2A)-tuberous sclerosis complex 2 (TSC2) complex that represses S6K1 activity. In response to fibroblast interaction with polymerized collagen, β1 integrin forms a complex with PP2A that targets TSC2 as a substrate. PP2A represses the level of TSC2 phosphorylation and maintains TSC2 in an activated state. Activated TSC2 negatively regulates the downstream kinase S6K1 and inhibits G1/S transit. Knockdown of TSC2 enables fibroblasts to overcome the anti-proliferative properties of polymerized collagen. Furthermore, we show that this reduction in TSC2 and S6K1 phosphorylation occurs largely independent of Akt. Although S6K1 activity was markedly suppressed by polymerized collagen, we found that minimal changes in Akt activity occurred. We demonstrate that up-regulation of Akt by overexpression of constitutively active phosphatidylinositol 3-kinase p110 subunit had minor effects on TSC2 and S6K1 phosphorylation. These findings demonstrate that polymerized collagen represses fibroblast proliferation by a mechanism involving the formation of a β1 integrin-PP2A-TSC2 complex that negatively regulates S6K1 and inhibits G1/S phase transition.


American Journal of Respiratory Cell and Molecular Biology | 2015

Pathologic Regulation of Collagen I by an Aberrant Protein Phosphatase 2A/Histone Deacetylase C4/MicroRNA-29 Signal Axis in Idiopathic Pulmonary Fibrosis Fibroblasts

Wajahat Khalil; Hong Xia; Vidya Bodempudi; Judy Kahm; Polla Hergert; Karen Smith; Mark Peterson; Matthew Parker; Jeremy Herrera; Peter B. Bitterman; Craig A. Henke

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless expansion of fibroblasts depositing type I collagen within the alveolar wall and obliterating the alveolar airspace. MicroRNA (miR)-29 is a potent regulator of collagen expression. In IPF, miR-29 levels are low, whereas type I collagen expression is high. However, the mechanism for suppression of miR-29 and increased type I collagen expression in IPF remains unclear. Here we show that when IPF fibroblasts are seeded on polymerized type I collagen, miR-29c levels are suppressed and type I collagen expression is high. In contrast, miR-29c is high and type I collagen expression is low in control fibroblasts. We demonstrate that the mechanism for suppression of miR-29 during IPF fibroblast interaction with polymerized collagen involves inappropriately low protein phosphatase (PP) 2A function, leading to histone deacetylase (HDA) C4 phosphorylation and decreased nuclear translocation of HDAC4. We demonstrate that overexpression of HDAC4 in IPF fibroblasts restored miR-29c levels and decreased type I collagen expression, whereas knocking down HDAC4 in control fibroblasts suppressed miR-29c levels and increased type I collagen expression. Our data indicate that IPF fibroblast interaction with polymerized type I collagen results in an aberrant PP2A/HDAC4 axis, which suppresses miR-29, causing a pathologic increase in type I collagen expression.


Journal of Cell Biology | 2008

Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis

Hong Xia; Deanna Diebold; Richard Seonghun Nho; David Perlman; Jill Kleidon; Judy Kahm; Svetlana Avdulov; Mark Peterson; John Nerva; Peter B. Bitterman; Craig A. Henke

Xia et al. 2008. J. Exp. Med. doi:10.1084/jem.20080001 [OpenUrl][1][Abstract/FREE Full Text][2] [1]: {openurl}?query=rft_id%253Dinfo%253Adoi%252F10.1084%252Fjem.20080001%26rft_id%253Dinfo%253Apmid%252F18541712%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%


Journal of Biological Chemistry | 2004

Focal Adhesion Kinase Is Upstream of Phosphatidylinositol 3-Kinase/Akt in Regulating Fibroblast Survival in Response to Contraction of Type I Collagen Matrices via a β1 Integrin Viability Signaling Pathway

Hong Xia; Richard Seonghun Nho; Judy Kahm; Jill Kleidon; Craig A. Henke


Journal of Biological Chemistry | 2002

β1 Integrin Regulates Fibroblast Viability during Collagen Matrix Contraction through a Phosphatidylinositol 3-Kinase/Akt/Protein Kinase B Signaling Pathway

Bin Tian; Khashayar Lessan; Judy Kahm; Jill Kleidon; Craig A. Henke

Collaboration


Dive into the Judy Kahm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Xia

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Kleidon

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Smith

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge