Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy Young is active.

Publication


Featured researches published by Judy Young.


Cancer Research | 2008

MetMAb, the One-Armed 5D5 Anti-c-Met Antibody, Inhibits Orthotopic Pancreatic Tumor Growth and Improves Survival

Hongkui Jin; Renhui Yang; Zhong Zheng; Mally Romero; Jed Ross; Hani Bou-Reslan; Richard A. D. Carano; Ian Kasman; Elaine Mai; Judy Young; Jiping Zha; Zemin Zhang; Sarajane Ross; Ralph Schwall; Gail Colbern; Mark Merchant

The hepatocyte growth factor (HGF) and its receptor, c-Met, have been implicated in driving proliferation, invasion, and poor prognosis in pancreatic cancer. Here, we investigated the expression of HGF and c-Met in primary pancreatic cancers and described in vitro and in vivo models in which MetMAb, a monovalent antibody against c-Met, was evaluated. First, expression of HGF and MET mRNA was analyzed in 59 primary pancreatic cancers and 51 normal samples, showing that both factors are highly expressed in pancreatic cancer. We next examined HGF responsiveness in pancreatic cancer lines to select lines that proliferate in response to HGF. Based on these studies, two lines were selected for further in vivo model development: BxPC-3 (c-Met(+), HGF(-)) and KP4 (c-Met(+), HGF(+)) cells. As BxPC-3 cells are responsive to exogenous HGF, s.c. tumor xenografts were grown in a paracrine manner with purified human HGF provided by osmotic pumps, wherein MetMAb treatment significantly inhibited tumor growth. KP4 cells are autocrine for HGF and c-Met, and MetMAb strongly inhibited s.c. tumor growth. To better model pancreatic cancer and to enable long-term survival studies, an orthotopic model of KP4 was established. MetMAb significantly inhibited orthotopic KP4 tumor growth in 4-week studies monitored by ultrasound and also improved survival in 90-day studies. MetMAb significantly reduced c-Met phosphorylation in orthotopic KP4 tumors with a concomitant decrease in Ki-67 staining. These data suggest that the HGF/c-Met axis plays an important role in the progression of pancreatic cancer and that targeting c-Met therein may have therapeutic value.


Nature Medicine | 2009

Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease.

Eugene Y. Chiang; Ganesh Kolumam; Xin Yu; Michelle Francesco; Sinisa Ivelja; Ivan Peng; Peter Gribling; Jean Shu; Wyne P. Lee; Canio J. Refino; Mercedesz Balazs; Andres Paler-Martinez; Allen Nguyen; Judy Young; Kai H. Barck; Richard A. D. Carano; Ron Ferrando; Lauri Diehl; Devavani Chatterjea; Jane L. Grogan

Uncontrolled T helper type 1 (TH1) and TH17 cells are associated with autoimmune responses. We identify surface lymphotoxin-α (LT-α) as common to TH0, TH1 and TH17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-α. Depleting LT-α–specific mAb inhibited T cell–mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. In collagen-induced arthritis (CIA), preventive and therapeutic administration of LT-α–specific mAb inhibited disease, and immunoablated T cells expressing interleukin-17 (IL-17), interferon-γ and tumor necrosis factor-α (TNF-α), whereas decoy lymphotoxin-β receptor (LT-βR) fusion protein had no effect. A mutation in the Fc tail, rendering the antibody incapable of Fcγ receptor binding and antibody-dependent cellular cytotoxicity activity, abolished all in vivo effects. Efficacy in CIA was preceded by a loss of rheumatoid-associated cytokines IL-6, IL-1β and TNF-α within joints. These data indicate that depleting LT-α–expressing lymphocytes with LT-α–specific mAb may be beneficial in the treatment of autoimmune disease.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent

Mark Merchant; Xiaolei Ma; Henry R. Maun; Zhong Zheng; Jing Peng; Mally Romero; Arthur Huang; Nai Ying Yang; Merry Nishimura; Joan M. Greve; Lydia Santell; Yu-Wen Zhang; Yanli Su; Dafna Kaufman; Karen Billeci; Elaine Mai; Barbara Moffat; Amy Lim; Eileen T. Duenas; Heidi S. Phillips; Hong Xiang; Judy Young; George F. Vande Woude; Mark S. Dennis; Dorothea Reilly; Ralph Schwall; Melissa A. Starovasnik; Robert A. Lazarus; Daniel G. Yansura

Significance Therapeutic antibodies have revolutionized the treatment of human disease. Despite these advances, antibody bivalency limits their utility against some targets. Here, we describe the development of a one-armed (monovalent) antibody, onartuzumab, targeting the receptor tyrosine kinase MET. While initial screening of bivalent antibodies produced agonists of MET, engineering them into monovalent antibodies produced antagonists instead. We explain the structural basis of the mechanism of action with the crystal structure of onartuzumab antigen-binding fragment in complex with MET and HGF-β. These discoveries have led to an additional antibody-based therapeutic option and shed light on the underpinnings of HGF/MET signaling. Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.


Cancer Research | 2014

Antitumor Efficacy of a Bispecific Antibody That Targets HER2 and Activates T Cells

Teemu T. Junttila; Ji Li; Jennifer Johnston; Maria Hristopoulos; Robyn Clark; Diego Ellerman; Bu-Er Wang; Yijin Li; Mary Mathieu; Guangmin Li; Judy Young; Elizabeth Luis; Gail Lewis Phillips; Eric Stefanich; Christoph Spiess; Andrew G. Polson; Bryan Irving; Justin Scheer; Melissa R. Junttila; Mark S. Dennis; Robert F. Kelley; Klara Totpal; Allen Ebens

Clinical results from the latest strategies for T-cell activation in cancer have fired interest in combination immunotherapies that can fully engage T-cell immunity. In this study, we describe a trastuzumab-based bispecific antibody, HER2-TDB, which targets HER2 and conditionally activates T cells. HER2-TDB specifically killed HER2-expressing cancer cells at low picomolar concentrations. Because of its unique mechanism of action, which is independent of HER2 signaling or chemotherapeutic sensitivity, HER2-TDB eliminated cells refractory to currently approved HER2 therapies. HER2-TDB exhibited potent antitumor activity in four preclinical model systems, including MMTV-huHER2 and huCD3 transgenic mice. PD-L1 expression in tumors limited HER2-TDB activity, but this resistance could be reversed by anti-PD-L1 treatment. Thus, combining HER2-TDB with anti-PD-L1 yielded a combination immunotherapy that enhanced tumor growth inhibition, increasing the rates and durability of therapeutic response.


Science Translational Medicine | 2015

Anti-CD20/CD3 T cell–dependent bispecific antibody for the treatment of B cell malignancies

Liping L. Sun; Diego Ellerman; Mary Mathieu; Maria Hristopoulos; Xiaocheng Chen; Yijin Li; Xiao-Jie Yan; Robyn Clark; Arthur E. Reyes; Eric Stefanich; Elaine Mai; Judy Young; Clarissa Johnson; Mahrukh Huseni; Xinhua Wang; Yvonne Chen; Peiyin Wang; Hong Wang; Noel Dybdal; Yu-Waye Chu; Nicholas Chiorazzi; Justin Scheer; Teemu T. Junttila; Klara Totpal; Mark S. Dennis; Allen Ebens

Anti-CD20/CD3 T cell–dependent bispecific antibodies may be useful for the treatment of B cell malignancies. Two-headed cancer therapy Immunotherapeutic approaches harness either humoral (antibody-mediated) or cellular (T cell–mediated) immunity to fight cancer. Sun et al. combine these approaches by designing a CD3/CD20 TDB (T cell–dependent bispecific), a dual-targeted antibody that recruits T cells to CD20-expressing cells. Their humanized TDB induces T cells to kill primary patient leukemia and lymphoma cells both in vitro and in a mouse model and can deplete CD20-expressing B cells in a macaque model with similar properties as conventional antibodies. If these data hold true in clinical studies, this CD20/CD3 TDB could add to our expanding arsenal of cancer immunotherapeutics. Bispecific antibodies and antibody fragments in various formats have been explored as a means to recruit cytolytic T cells to kill tumor cells. Encouraging clinical data have been reported with molecules such as the anti-CD19/CD3 bispecific T cell engager (BiTE) blinatumomab. However, the clinical use of many reported T cell–recruiting bispecific modalities is limited by liabilities including unfavorable pharmacokinetics, potential immunogenicity, and manufacturing challenges. We describe a B cell–targeting anti-CD20/CD3 T cell–dependent bispecific antibody (CD20-TDB), which is a full-length, humanized immunoglobulin G1 molecule with near-native antibody architecture constructed using “knobs-into-holes” technology. CD20-TDB is highly active in killing CD20-expressing B cells, including primary patient leukemia and lymphoma cells both in vitro and in vivo. In cynomolgus monkeys, CD20-TDB potently depletes B cells in peripheral blood and lymphoid tissues at a single dose of 1 mg/kg while demonstrating pharmacokinetic properties similar to those of conventional monoclonal antibodies. CD20-TDB also exhibits activity in vitro and in vivo in the presence of competing CD20-targeting antibodies. These data provide rationale for the clinical testing of CD20-TDB for the treatment of CD20-expressing B cell malignancies.


Cytokine | 2010

Lymphotoxin-αβ heterotrimers are cleaved by metalloproteinases and contribute to synovitis in rheumatoid arthritis

Judy Young; Xin Yu; Kristen Wolslegel; Allen Nguyen; Catherine Kung; Eugene Chiang; Ganesh Kolumam; Nathan Wei; Wai Lee Wong; Laura DeForge; Michael J. Townsend; Jane L. Grogan

Tumor necrosis factor-superfamily (TNF-SF) members, lymphotoxin (LT)-alpha and LTbeta, are proinflammatory cytokines associated with pathology in rheumatoid arthritis. LTalpha3 homotrimers are secreted, whereas LTalpha(1)beta(2) heterotrimers are expressed on the surface of activated lymphocytes. As many TNF-SF members are actively cleaved from cell membranes, we determined whether LTalphabeta heterotrimers are also cleaved, and are biologically active in rheumatoid arthritis (RA) patients. LTalphabeta heterotrimers were detected in culture supernatants from activated human T-helper (Th) 0, Th1, and Th17 cells, together with LTalpha3 and TNFalpha. The heterotimers were actively cleaved from the cell surface by ADAM17 metalloproteinase (MMP) and MMP-8, and cleavage was inhibited by TAPI-1, a TNF-alpha converting enzyme (TACE) inhibitor. Soluble LTalphabeta was detected in serum from both normal donors and RA patients, and was elevated in synovial fluid from RA patients compared to osteoarthritis (OA) patients. Levels of LTalphabeta in RA patient synovial fluid correlated with increased TNFalpha, IL-8, IL-12, IL-1beta, IFN-gamma, and IL-6 cytokines. Moreover, recombinant LTalpha1beta2-induced CXCL1, CXCL2, IL-6, IL-8, VCAM-1, and ICAM-1 from primary synovial fibroblasts isolated from RA patients. Therefore, soluble LTalphabeta in synovial fluid is associated with a proinflammatory cytokine milieu that contributes to synovitis in RA.


Cancer immunology research | 2015

Afucosylated Antibodies Increase Activation of FcγRIIIa-Dependent Signaling Components to Intensify Processes Promoting ADCC

Scot D Liu; Cecile Chalouni; Judy Young; Teemu T. Junttila; Mark X. Sliwkowski; John B. Lowe

Liu and colleagues show that afucosylated antibodies potentiate ADCC by increasing the cytotoxic rate and number of NK cells capable of killing multiple targets, which results from increased affinity between antibodies and FcγRIIIa to enhance activation of signaling molecules that promote cytoskeletal rearrangement and degranulation. Antibody-dependent cellular cytotoxicity (ADCC) is a key mechanism by which therapeutic antibodies mediate their antitumor effects. The absence of fucose on the heavy chain of the antibody increases the affinity between the antibody and FcγRIIIa, which results in increased in vitro and in vivo ADCC compared with the fucosylated form. However, the cellular and molecular mechanisms responsible for increased ADCC are unknown. Through a series of biochemical and cellular studies, we find that human natural killer (NK) cells stimulated with afucosylated antibody exhibit enhanced activation of proximal FcγRIIIa signaling and downstream pathways, as well as enhanced cytoskeletal rearrangement and degranulation, relative to stimulation with fucosylated antibody. Furthermore, analysis of the interaction between human NK cells and targets using a high-throughput microscope-based antibody-dependent cytotoxicity assay shows that afucosylated antibodies increase the number of NK cells capable of killing multiple targets and the rate with which targets are killed. We conclude that the increase in affinity between afucosylated antibodies and FcγRIIIa enhances activation of signaling molecules, promoting cytoskeletal rearrangement and degranulation, which, in turn, potentiates the cytotoxic characteristics of NK cells to increase efficiency of ADCC. Cancer Immunol Res; 3(2); 173–83. ©2014 AACR.


Proteomics | 2011

Resurrection of a clinical antibody: Template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-α antibody†

Natalie E. Castellana; Krista McCutcheon; Victoria Pham; Kristin Harden; Allen Nguyen; Judy Young; Camellia W. Adams; Kurt Schroeder; David Arnott; Vineet Bafna; Jane L. Grogan; Jennie R. Lill

A mouse hybridoma antibody directed against a member of the tumour necrosis factor (TNF)‐superfamily, lymphotoxin‐alpha (LT‐α), was isolated from stored mouse ascites and purified to homogeneity. After more than a decade of storage the genetic material was not available for cloning; however, biochemical assays with the ascites showed this antibody against LT‐α (LT‐3F12) to be a preclinical candidate for the treatment of several inflammatory pathologies. We have successfully rescued the LT‐3F12 antibody by performing MS analysis, primary amino acid sequence determination by template proteogenomics, and synthesis of the corresponding recombinant DNA by reverse engineering. The resurrected antibody was expressed, purified and shown to demonstrate the desired specificity and binding properties in a panel of immuno‐biochemical tests. The work described herein demonstrates the powerful combination of high‐throughput informatic proteomic de novo sequencing with reverse engineering to reestablish monoclonal antibody‐expressing cells from archived protein sample, exemplifying the development of novel therapeutics from cryptic protein sources.


PLOS ONE | 2012

In vivo depletion of lymphotoxin-alpha expressing lymphocytes inhibits xenogeneic graft-versus-host-disease.

Eugene Y. Chiang; Ganesh Kolumam; Krista McCutcheon; Judy Young; Zhonghua Lin; Mercedesz Balazs; Jane L. Grogan

Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases.


Clinical Cancer Research | 2013

Onartuzumab (MetMAb): Using Nonclinical Pharmacokinetic and Concentration–Effect Data to Support Clinical Development

Hong Xiang; Brendan C. Bender; Arthur E. Reyes; Mark Merchant; Nelson L. Jumbe; Mally Romero; Teresa Davancaze; Ihsan Nijem; Elaine Mai; Judy Young; Amy Peterson; Lisa A. Damico-Beyer

Purpose: We characterized the pharmacokinetics of onartuzumab (MetMAb) in animals and determined a concentration–effect relationship in tumor-bearing mice to enable estimation of clinical pharmacokinetics and target doses. Experimental Design: A tumor growth inhibition model was used to estimate tumoristatic concentrations (TSC) in mice. Human pharmacokinetic parameters were projected from pharmacokinetics in cynomolgus monkeys by the species-invariant time method. Monte Carlo simulations predicted the percentage of patients achieving steady-state trough serum concentrations (Ctrough ss) ≥TSC for every 3-week (Q3W) dosing. Results: Onartuzumab clearance (CL) in the linear dose range was 21.1 and 12.2 mL/d/kg in mice and cynomolgus monkeys with elimination half-life at 6.10 and 3.37 days, respectively. The estimated TSC in KP4 pancreatic xenograft tumor-bearing mice was 15 μg/mL. Projected CL for humans in the linear dose range was 5.74 to 9.36 mL/d/kg with scaling exponents of CL at 0.75 to 0.9. Monte Carlo simulations projected a Q3W dose of 10 to 30 mg/kg to achieve Ctrough ss of 15 μg/mL in 95% or more of patients. Conclusions: Onartuzumab pharmacokinetics differed from typical bivalent glycosylated monoclonal antibodies with approximately 2-times faster CL in the linear dose range. Despite this higher CL, xenograft efficacy data supported dose flexibility with Q1W to Q3W dose regimens in the clinical setting with a TSC of 15 μg/mL as the Ctrough ss target. The projected human efficacious dose of 10 to 30 mg/kg Q3W should achieve the target TSC of 15 μg/mL. These data show effective pharmacokinetic/pharmacodynamic modeling to project doses to be tested in the clinic. Clin Cancer Res; 19(18); 5068–78. ©2013 AACR.

Collaboration


Dive into the Judy Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge