Juergen Horbach
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juergen Horbach.
Physical Review B | 2007
Juergen Horbach; Subir K. Das; Axel Griesche; Michael-Peter Macht; Guenter Frohberg; Andreas Bernhard Meyer
A combination of experimental techniques and molecular dynamics (MD) computer simulation is used to investigate the diffusion dynamics in Al 80 Ni 20 melts. Experimentally, the self-diffusion coefficient of Ni is measured by the long-capillary (LC) method and by quasielastic neutron scattering. The LC method yields also the interdiffusion coefficient. Whereas the experiments were done in the normal liquid state, the simulations provided the determination of both self-diffusion and interdiffusion constants in the undercooled regime as well. The simulation results show good agreement with the experimental data. In the temperature range 3000 K ≥ T ≥ 715 K, the interdiffusion coefficient is larger than the self-diffusion constants. Furthermore the simulation shows that this difference becomes larger in the undercooled regime. This result can be refered to a relatively strong temperature dependence of the thermodynamic factor Φ, which describes the thermodynamic driving force for interdiffusion. The simulations also indicate that the Darken equation is a good approximation, even in the undercooled regime. This implies that dynamic cross correlations play a minor role for the temperature range under consideration.
Physical Review Letters | 2002
Juergen Horbach; Walter Kob; K. Binder
We use molecular-dynamics computer simulations to study the dynamics of amorphous (Na2O)2(SiO2). We find that the Na ions move in channels embedded in a SiO2 matrix. The characteristic distance between these channels gives rise to a prepeak in the structure factor at q approximately equal to 0.95 A(-1). The dynamics of sodium is given by a fast process which can be seen in the incoherent scattering function and a slow process which is seen in the coherent function. The relaxation time of the latter coincides with the alpha-relaxation time of the matrix. The Kohlrausch exponent of the fast process for q>1.6 A(-1) is the same as the von Schweidler exponent for the slow one. Thus the two processes are closely related.
EPL | 2008
Ali Kerrache; Juergen Horbach; K. Binder
The melting and crystallization of Al50Ni50 are studied by means of molecular-dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where the B2 phase of AlNi in the middle of an elongated simulation box is separated by two planar interfaces from the liquid phase, thereby considering the (100) crystal orientation. By determining the temperature dependence of the interface velocity, an accurate estimate of the melting temperature is provided. The value k=0.0025 m/s/K for the kinetic growth coefficient is found. This value is about two orders of magnitude smaller than that found in recent simulation studies of one-component metals. The classical Wilson-Frenkel model is not able to describe the crystal growth kinetics on a quantitative level. We argue that this is due to the neglect of diffusion processes in the liquid-crystal interface.
EPL | 2008
Antoine Carre; Juergen Horbach; Simona Ispas; Walter Kob
A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular-dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of α-quartz are well reproduced, showing the transferability of the new potential.
Journal of Chemical Physics | 2007
Antoine Carre; Ludovic Berthier; Juergen Horbach; Simona Ispas; Walter Kob
We show that finite-range alternatives to the standard long-range pair potential for silica by van Beest et al. [Phys. Rev. Lett. 64, 1955 (1990)] might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance rc such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for rc approximately 10 A. For lower values of rc, the long-range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method.
Journal of Chemical Physics | 2006
Subir K. Das; Juergen Horbach; K. Binder; Michael E. Fisher; J. V. Sengers
A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grand-canonical Monte Carlo (SGMC) and molecular dynamics (MD) methods near a liquid-liquid critical temperature T(c). Choosing equal chemical potentials for the two species, the SGMC switches identities (A-->B-->A) to generate well-equilibrated configurations of the system on the coexistence curve for TT(c). A finite-size scaling analysis of the concentration susceptibility above T(c) and of the order parameter below T(c) is performed, varying the number of particles from N=400 to 12 800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence.
Journal of Chemical Physics | 2005
Apratim Chatterji; Juergen Horbach
We present a hybrid method for the simulation of colloidal systems that combines molecular dynamics (MD) with the Lattice Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point [with a velocity V(r) at any off-lattice position r] is interacting with the neighboring eight LB nodes by a frictional force F = xi0(V(r)-u(r)), with xi0 being a friction coefficient and u(r) being the velocity of the fluid at the position r. Thermal fluctuations are introduced in the framework of fluctuating hydrodynamics. This coupling scheme has been proposed recently for polymer systems by Ahlrichs and Dunweg [J. Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single colloidal particle in a LB fluid, namely, the effective Stokes friction and long-time tails in the autocorrelation functions for the translational and rotational velocity. Moreover, a charged colloidal system is considered consisting of a macroion, counterions, and coions that are coupled to a LB fluid. We study the behavior of the ions in a constant electric field. In particular, an estimate of the effective charge of the macroion is yielded from the number of counterions that move with the macroion in the direction of the electric field.
Physical Review Letters | 2006
Juergen Horbach; Sauro Succi
A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by molecular dynamics (MD) computer simulation and compared to results of lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.
EPL | 2006
Thomas Voigtmann; Juergen Horbach
Calculations within the mode-coupling theory of the glass transition (MCT) are used to elucidate the structure-dynamics relation in sodium-silicate melts (NSx) of varying sodium concentration. Using only the partial static structure factors from molecular-dynamics (MD) computer simulation as input, MCT qualitatively reproduces the large separation in relaxation time scales between the sodium and the silicon/oxygen components peculiar to such mixtures. This shows that it is possible to explain the fast sodium-ion dynamics observed in sodium-silicate melts using MCT as a microscopic theory, and from the averaged equilibrium structure alone.
Journal of Physics: Condensed Matter | 2008
Juergen Horbach
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modelled by a pairwise-additive potential, the so-called CHIK potential, that has been recently proposed by Carre et al 2008 Europhys. Lett. 82 17001. The experimental equation of state is well reproduced by the CHIK model. With increasing pressure (density), the structure changes from a tetrahedral network to a network containing a high number of five- and six-fold Si–O coordinations. In the partial static structure factors, this change of the structure with increasing density is reflected by a shift of the first sharp diffraction peak towards higher wavenumbers q, eventually merging with the main peak at densities around 4.2 g cm−3. The self-diffusion constants as a function of pressure show the experimentally known maximum, occurring around a pressure of about 20 GPa.