Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juergen Koepke is active.

Publication


Featured researches published by Juergen Koepke.


Structure | 1996

The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum

Juergen Koepke; Xiche Hu; Cornelia Muenke; Klaus Schulten; Hartmut Michel

BACKGROUND The light-harvesting complexes II (LH-2s) are integral membrane proteins that form ring-like structures, oligomers of alpha beta-heterodimers, in the photosynthetic membranes of purple bacteria. They contain a large number of chromophores organized optimally for light absorption and rapid light energy migration. Recently, the structure of the nonameric LH-2 of Rhodopseudomonas acidophila has been determined; we report here the crystal structure of the octameric LH-2 from Rhodospirillum molischianum. The unveiling of similarities and differences in the architecture of these proteins may provide valuable insight into the efficient energy transfer mechanisms of bacterial photosynthesis. RESULTS The crystal structure of LH-2 from Rs. molischianum has been determined by molecular replacement at 2.4 A resolution using X-ray diffraction. The crystal structure displays two concentric cylinders of sixteen membrane-spanning helical subunits, containing two rings of bacteriochlorophyll-a (BChl-a) molecules. One ring comprises sixteen B850 BChl-as perpendicular to the membrane plane and the other eight B800 BChl-as that are nearly parallel to the membrane plane; eight membrane-spanning lycopenes (the major carotenoid in this complex) stretch out between the B800 and B850 BChl-as. The B800 BChl-as exhibit a different ligation from that of Rps. acidophila (aspartate is the Mg ligand as opposed to formyl-methionine in Rps. acidophila). CONCLUSIONS The light-harvesting complexes from different bacteria assume various ring sizes. In LH-2 of Rs. molischianum, the Qy transition dipole moments of neighbouring B850 and B800 BChl-as are nearly parallel to each other, that is, they are optimally aligned for Föster exciton transfer. Dexter energy transfer between these chlorophylls is also possible through interactions mediated by lycopenes and B850 BChl-a phytyl tails; the B800 BChl-a and one of the two B850 BChl-as associated with each heterodimeric unit are in van der Waals distance to a lycopene, such that singlet and triplet energy transfer between lycopene and the BChl-as can occur by the Dexter mechanism. The ring structure of the B850 BChl-as is optimal for light energy transfer in that it samples all spatial absorption and emission characteristics and places all oscillator strength into energetically low lying, thermally accessible exciton states.


Journal of Biological Chemistry | 2005

Crystal Structure of Vinorine Synthase, the First Representative of the BAHD Superfamily

Xueyan Ma; Juergen Koepke; Santosh Panjikar; Günter Fritzsch; Joachim Stöckigt

Vinorine synthase is an acetyltransferase that occupies a central role in the biosynthesis of the antiarrhythmic monoterpenoid indole alkaloid ajmaline in the plant Rauvolfia. Vinorine synthase belongs to the benzylalcohol acetyl-, anthocyanin-O-hydroxy-cinnamoyl-, anthranilate-N-hydroxy-cinnamoyl/benzoyl-, deacetylvindoline acetyltransferase (BAHD) enzyme superfamily, members of which are involved in the biosynthesis of several important drugs, such as morphine, Taxol, or vindoline, a precursor of the anti-cancer drugs vincaleucoblastine and vincristine. The x-ray structure of vinorine synthase is described at 2.6-Å resolution. Despite low sequence identity, the two-domain structure of vinorine synthase shows surprising similarity with structures of several CoA-dependent acyltransferases such as dihydrolipoyl transacetylase, polyketide-associated protein A5, and carnitine acetyltransferase. All conserved residues typical for the BAHD family are found in domain 1. His160 of the HXXXD motif functions as a general base during catalysis. It is located in the center of the reaction channel at the interface of both domains and is accessible from both sides. The channel runs through the entire molecule, allowing the substrate and co-substrate to bind independently. Asp164 points away from the catalytic site and seems to be of structural rather than catalytic importance. Surprisingly, the DFGWG motif, which is indispensable for the catalyzed reaction and unique to the BAHD family, is located far away from the active site and seems to play only a structural role. Vinorine synthase represents the first solved protein structure of the BAHD superfamily.


The Plant Cell | 2006

The Structure of Rauvolfia serpentina Strictosidine Synthase Is a Novel Six-Bladed β-Propeller Fold in Plant Proteins

Xueyan Ma; Santosh Panjikar; Juergen Koepke; Elke A. Loris; Joachim Stöckigt

The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of ∼2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler–type reaction and represents a novel six-bladed β-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed β-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.


Biochimica et Biophysica Acta | 2009

High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: New insights into the active site and the proton transfer pathways

Juergen Koepke; Elena Olkhova; Heike Angerer; Hannelore Müller; Guohong Peng; Hartmut Michel

The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.


Structure | 2001

Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.

Eileen I. Scharff; Juergen Koepke; Günter Fritzsch; Christian Lücke; Heinz Rüterjans

BACKGROUND Phosphotriesterases (PTE) are enzymes capable of detoxifying organophosphate-based chemical warfare agents by hydrolysis. One subclass of these enzymes comprises the family of diisopropylfluorophosphatases (DFPases). The DFPase reported here was originally isolated from squid head ganglion of Loligo vulgaris and can be characterized as squid-type DFPase. It is capable of hydrolyzing the organophosphates diisopropylfluorophosphate, soman, sarin, tabun, and cyclosarin. RESULTS Crystals were grown of both the native and the selenomethionine-labeled enzyme. The X-ray crystal structure of the DFPase from Loligo vulgaris has been solved by MAD phasing and refined to a crystallographic R value of 17.6% at a final resolution of 1.8 A. Using site-directed mutagenesis, we have structurally and functionally characterized essential residues in the active site of the enzyme. CONCLUSIONS The crystal structure of the DFPase from Loligo vulgaris is the first example of a structural characterization of a squid-type DFPase and the second crystal structure of a PTE determined to date. Therefore, it may serve as a structural model for squid-type DFPases in general. The overall structure of this protein represents a six-fold beta propeller with two calcium ions bound in a central water-filled tunnel. The consensus motif found in the blades of this beta propeller has not yet been observed in other beta propeller structures. Based on the results obtained from mutants of active-site residues, a mechanistic model for the DFP hydrolysis has been developed.


The Plant Cell | 2007

Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family

Leif Barleben; Santosh Panjikar; Martin Ruppert; Juergen Koepke; Joachim Stöckigt

Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SGs residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases.


Acta Crystallographica Section D-biological Crystallography | 2003

Statistical analysis of crystallographic data obtained from squid ganglion DFPase at 0.85 Å resolution

Juergen Koepke; Eileen I. Scharff; Christian Lücke; Heinz Rüterjans; Günter Fritzsch

The X-ray crystal structure of squid-type diisopropylfluorophosphatase (DFPase) has been refined to a resolution of 0.85 A and a crystallographic R value of 9.4%. Crystal annealing improved both the mosaicity and resolution of the crystals considerably. The overall structure of this protein represents a six-bladed beta-propeller with two calcium ions bound in a central water-filled tunnel. 496 water, two glycerol and two MES buffer molecules and 18 PEG fragments of different lengths could be refined in the solvent region. 45 of the 314 residues have been refined with alternative orientations. H atoms have been omitted from disordered residues. For the residues of the inner beta-strands, H atoms are visible in a normal F(o) - F(c) difference map of a hydrogen-deficient structure model. The 208 most reliable residues, without disorder or reduced occupancy in their side chains, were finally refined without restraints. A subsequent full-matrix refinement cycle for the positional parameters yielded estimated standard deviations (e.s.d.s) by matrix inversion. The thus calculated bond lengths and bond angles and their e.s.d.s were used to obtain averaged bond lengths and bond angles, which were compared with the restraints applied in the preceding refinement cycles. The lengths and angles of the hydrogen bonds inside the antiparallel beta-sheets of the DFPase structure were compared with data averaged over 11 high-resolution protein structures. Torsion angles were averaged according to angle types used as restraints in X-PLOR and CNS and subsequently compared with values obtained from 46 high-resolution structures. Side-chain torsion angles were also classified into rotamer types according to the Penultimate Rotamer Library. Moreover, precise dimensions for both Ca(2+)-coordination polyhedra could be obtained and the coordination of one Ca(2+) ion by an imidazole N atom was confirmed. This statistical analysis thus provides a first step towards a set of restraints that are founded completely on macromolecular data; however, 10-20 additional protein data sets of comparable accuracy and size will be required to obtain a larger statistical base, especially for side-chain analysis.


Acta Crystallographica Section D-biological Crystallography | 2005

Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine

Juergen Koepke; Xueyan Ma; Günter Fritzsch; Hartmut Michel; Joachim Stöckigt

Strictosidine synthase (STR1) is a central enzyme that participates in the biosynthesis of almost all plant monoterpenoid indole alkaloids. After heterologous expression in Escherichia coli, crystals of STR1 and its substrate complex with tryptamine were obtained by the hanging-drop technique at 302-304 K with potassium sodium tartrate tetrahydrate as precipitant. All crystals belong to space group R3. The native STR1 crystals diffract to 2.95 A and have unit-cell parameters a = b = 150.3, c = 122.4 A. The tryptamine complex crystals diffract to 2.38 A, with unit-cell parameters a = b = 147.3, c = 122.3 A.


Acta Crystallographica Section D-biological Crystallography | 2005

Crystallization and preliminary X-ray analysis of native and selenomethionyl vinorine synthase from Rauvolfia serpentina.

Xueyan Ma; Juergen Koepke; Anja Bayer; Günter Fritzsch; Hartmut Michel; Joachim Stöckigt

Vinorine synthase (VS) is a central enzyme of the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure with significant sequence homology with VS is known. Crystals of VS and selenomethionyl-labelled VS from the medicinal plant Rauvolfia serpentina have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. VS crystals diffract to 2.8 A and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 82.3, b = 89.6, c = 136.2 A. The selenomethionyl VS crystal was nearly isomorphous with the VS crystal.


Archive | 1990

Recent Advances in the Structure Analysis of Rhodopseudomonas viridis Reaction Center Mutants

Irmgard Sinning; Juergen Koepke; Hartmut Michel

The primary charge separation in photosynthesis is mediated by a membrane protein pigment complex, the photosynthetic reaction center (RC). The RC from the purple bacterium Rhodopseudomonas (Rps). viridis has been crystallized and the subsequent X-ray structure analysis provided a complete picture of protein structure and pigment arrangement (see 1). The RC consists of four protein subunits, the H (high), M (medium) and L (low) subunits, according to their apparent molecular weights from SDS-PAGE, and a tightly bound cytochrome subunit. Four heme groups are covalently bound to the cytochrome subunit, whereas the other pigments are embedded into the L and M subunits. There are four bacteriochlorophyll b molecules, two of them form the special pair (the primary electron donor P), two bacteriophaeophytin b molecules, two chemically different quinones, QA (primary quinone, a menaquinone-9) and QB (secondary quinone, a ubiquinone-9, see 2), one carotenoid molecule (a dihydroneurosporene) and a non-heme iron. These pigments are arranged in a highly symmetric manner in two branches extending from the special pair to the non-heme iron (3). However, only one branch is active in electron transfer.

Collaboration


Dive into the Juergen Koepke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen I. Scharff

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Heinz Rüterjans

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Xu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Lücke

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge