Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juergen Michael Schanzer is active.

Publication


Featured researches published by Juergen Michael Schanzer.


Archives of Biochemistry and Biophysics | 2012

Development of tetravalent IgG1 dual targeting IGF-1R–EGFR antibodies with potent tumor inhibition

Rebecca Croasdale; Katharina Wartha; Juergen Michael Schanzer; Klaus-Peter Kuenkele; Carola Ries; Klaus Mayer; Christian Gassner; Martina Wagner; Nikolaos Dimoudis; Sylvia Herter; Christiane Jaeger; Claudia Ferrara; Eike Hoffmann; Lothar Kling; Wilma Lau; Roland F Staack; Julia Heinrich; Werner Scheuer; Jan Olaf Stracke; Christian Gerdes; Ulrich Brinkmann; Pablo Umana; Christian Klein

In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.


Journal of Biological Chemistry | 2014

A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type I (IGF-1R) demonstrating unique molecular properties.

Juergen Michael Schanzer; Katharina Wartha; Rebecca Croasdale; Samuel Moser; Klaus-Peter Künkele; Carola Ries; Werner Scheuer; Harald Duerr; Sandra Pompiati; Jan Pollman; Jan Olaf Stracke; Wilma Lau; Stefan Ries; Ulrich Brinkmann; Christian Klein; Pablo Umana

Background: Bispecific antibodies are currently emerging as a promising new class of cancer therapeutics. Results: The novel one-arm single chain Fab IgG bispecific antibody (XGFR) targeting IGF-1R and EGFR demonstrated potent signaling inhibition and enhanced ADCC induction. Conclusion: XGFR has shown in vitro and in vivo anti-tumor activity in pancreatic, lung, and colorectal mouse xenograft tumor models. Significance: Rational design can help to overcome low expression yields and impaired effector functions of bispecific antibodies. In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.


mAbs | 2016

XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer

Juergen Michael Schanzer; Katharina Wartha; Ekkehard Moessner; Ralf Hosse; Samuel Moser; Rebecca Croasdale; Halina Trochanowska; Cuiying Shao; Peng Wang; Lei Shi; Tina Weinzierl; Natascha Rieder; Marina Bacac; Carola Ries; Hubert Kettenberger; Tilman Schlothauer; Thomas Friess; Pablo Umana; Christian Klein

ABSTRACT The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.


Cancer Research | 2011

Abstract LB-212: XGFR, an Fc-engineered dual signaling inhibitor targeting IGF-1R and EGFR

Katharina Wartha; Rebecca Croasdale; Juergen Michael Schanzer; Ulrich Brinkmann; Marco H. Hofmann; Carola Ries; Natascha Rieder; Gabriele Hoelzlwimmer; Olivier Freytag; Sylvia Herter; Christian Gerdes; Klaus-Peter Kuenkele; Christian Klein

Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Background : Elevated signaling via the receptor tyrosine kinases IGF-1R and EGFR has been identified as common characteristic of multiple cancer type. IGF-1R and EGFR signal predominantly through the PI3K and MAPK signaling pathways and thereby mediate growth and survival signals crucial for the development and progression of cancer. There is strong cross talk on multiple levels between IGF-1R and EGFR dependent signaling pathways. Therefore, targeting IGF-1R and EGFR simultaneously is an attractive way to achieve maximal inhibition of signal transduction and to avoid resistance formation. Methods : Bispecific IGF1R-EGFR antibodies were engineered by linking scFv domains of an EGFR Mab (GA201) via Serine-Glycine linkers to an IgG1 IGF-1R Mab (RG1507). The functional properties of the bispecific antibodies were evaluated in cellular in vitro assays (IGF-1R/EGFR phosphorylation, downregulation, 3D proliferation and ADCC assays) and in in vivo xenograft models for tumor growth inhibition and survival. Results : Bispecific IGF-1R-EGFR antibodies (XGFR2, XGFR3, XGFR4) were successfully generated with yields and stability comparable to conventional IgG1 antibodies. XGFR antibodies effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation in H322M tumor cells and induced strong downmodulation of IGF-1R and enhanced EGFR downmodulation compared to the parental EGFR antibody GA201. XGFR antibodies showed strong anti-tumor efficacy comparable to the combination of monospecific IGF-1R and EGFR Mabs in the BxPC3 and H322M xenograft models. To enhance the ADCC properties of XGFR, afucosylated, glycoengineered bispecific antibodies with enhanced affinity for FcγRIIIA were generated using the GlycoMab technology. Glycoengineered bispecific antibodies were shown to have superior ADCC properties in in vitro ADCC assays and XGFR4 significantly prolonged median and overall survival of mice in an ADCC competent in vivo model (A549 i.v.). Conclusions : Bispecific IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components of multiple cancer types (IGF-1R and EGFR), resulting in effective inhibition of the PI3K and MAPK signaling pathway and to avoid the formation of resistance to therapy. Having overcome issues of stability and productivity, bispecific antibodies may become an advantageous way to reduce costs and infusion times in cancer therapy, while at the same time, achieving maximal anti-tumor effects through inhibition of multiple targets. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-212. doi:10.1158/1538-7445.AM2011-LB-212


Archive | 2010

Tri- or tetraspecific antibodies

Rebecca Croasdale; Christian Klein; Wolfgang Schaefer; Juergen Michael Schanzer


Archive | 2010

Bispecific, Tetravalent Antigen Binding Proteins

Sabine Imhof-Jung; Christian Klein; Joerg Thomas Regula; Wolfgang Schaefer; Juergen Michael Schanzer


Archive | 2010

TRIVALENT, BISPECIFIC ANTIBODIES

Ulrich Brinkmann; Rebecca Croasdale; Eike Hoffmann; Christian Klein; Ekkehard Moessner; Juergen Michael Schanzer; Pablo Umana


Archive | 2010

Bispecific antigen binding proteins

Sabine Imhof-Jung; Christian Klein; Joerg Thomas Regula; Wolfgang Schaefer; Juergen Michael Schanzer


Archive | 2010

Multispecific antibodies comprising full length antibodies and single chain fab fragments

Ulrich Brinkmann; Peter Bruenker; Rebecca Croasdale; Christian Klein; Erhard Kopetzki; Ekkehard Moessner; Joerg Thomas Regula; Juergen Michael Schanzer; Jan Olaf Stracke; Pablo Umana


Archive | 2009

Bispecific anti-VEGF/anti-ANG-2 antibodies

Monika Baehner; Ulrich Brinkmann; Guy Georges; Remko Albert Griep; Sabine Imhof-Jung; Anita Kavlie; Hubert Kettenberger; Christian Klein; Joerg Thomas Regula; Wolfgang Schaefer; Juergen Michael Schanzer; Werner Scheuer; Stefan Seeber; Markus Thomas

Collaboration


Dive into the Juergen Michael Schanzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Brinkmann

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Brinkmann

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge