Juergen Poerschmann
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juergen Poerschmann.
Environmental Science & Technology | 1995
Frank-Dieter Kopinke; Juergen Poerschmann; Ulrich. Stottmeister
Anthropogenic and natural humic materials were investigated as sorbents for hydrophobic solutes in aqueous solution. The first was taken from a brown coal wastewater pond. The measured sorption coefficients K oc and K dom are close to literature values for both sorbents. This holds for particulate (sediments) as well as for dissolved materials (humic and fulvic acids). A modified solubility parameter concept is proposed to better understand the K oc -K ow correlation. It makes it possible to estimate sorption coefficients for nonpolar solutes based on their K ow , if the δ value of the sorbent is known. On the other hand, measured sorption coefficients permit the calculation of this value, which can be considered a feature of the humic fraction under study. The mean δ value of humic organic matter estimated from sorption data in this paper is 12.5 ± 0.5 (cal cm -3 ) 1/2 .
Chemosphere | 2010
Juergen Poerschmann; Ulf Trommler; Tadeusz Górecki
The elimination of Bisphenol A (BPA) from contaminated waters is an urgent challenge. This contribution focuses on BPA degradation by homogeneous Fenton reagent based on reactive ()OH radicals. Pronounced sub-stoichiometric amounts of H(2)O(2) oxidant were used to simulate economically viable processes and operation under not fully controlled conditions, as for example in in situ groundwater remediation. Aside from the most abundant benzenediols and the monohydroxylated BPA intermediate (which were detected as stable intermediates in earlier contributions), a wide array of aromatic products in the molecular weight range between 94 Da (phenol) and approximately 500 Da could be detected, the overwhelming majority of which have not been reported thus far. The identification was carried out by GC/MS analysis of trimethylsilyl ethers. The structural assignments were confirmed through the use of fully deuterated [(2)H(16)] BPA as the substrate, as well as using retention indices calculated on the basis of the increment system. The occurrence of aromatic intermediates larger than BPA, which typically share either a biphenyl- or a diphenylether structure, can be explained by oxidative coupling reactions of stabilized free radicals or by the addition of organoradicals (organocations) onto BPA molecules or benzenediols. The hydroxycyclohexadienyl radical of BPA was recognized to play central role in the degradation pathways. Ring opening products, including lactic, acetic and dicarboxylic acids, could be detected in addition to aromatic intermediates. Since some of those intermediates and products are recalcitrant to further oxidation under the conditions of sub-stoichiometric Fenton reaction, they should be carefully considered when designing and optimizing Fenton-driven remediation systems.
Analytical Communications | 1996
Zhouyao Zhang; Juergen Poerschmann; Janusz Pawliszyn
A new approach to solid phase microextraction is described which enables the analysis of high boiling-point and non-volatile analytes in complex aqueous or other liquid matrices. In this approach the fibre of a solid phase microextraction (SPME) device was placed inside a cellulose hollow membrane with a molecular weight cut-off (MWCO) of 18 000 Da. The membrane, forming a concentric sheath around the fibre, allows target analytes, which typically have a molecular weight of less than 1000 Da, to diffuse through while excluding high molecular weight interfering compounds, such as humic acids, which have molecular weights up to several million Da. With the membrane protection, direct SPME was used successfully for extraction of large PAHs, such as chrysene and perylene, from aqueous samples containing humic acids. The initial investigation shows that the membrane protection slows down mass transfer during direct SPME sampling, which can be improved by using higher temperatures or thinner membranes.
Chemosphere | 2009
Juergen Poerschmann; Ulf Trommler; Tadeusz Górecki; Frank-Dieter Kopinke
Homogeneous catalytic Fenton oxidation proved to be very efficient in the degradation of high concentrations (3.9 mM) of 2-chlorophenol (2-CP) in aqueous matrices. When using [H(2)O(2)](0)/[2-CP](0) substoichiometric molar ratios of 4 and 16, the detected aromatic intermediates included mainly chlorinated benzenediols, with the virtual absence of condensation products of higher molecular weight. At even lower substoichiometric ratios of [H(2)O(2)](0)/[2-CP](0) (< or =2.2), hydroxylated chlorobiphenyls, hydroxylated chlorodiphenyl ethers and hydroxylated chlorinated dibenzofurans were formed in addition to chlorinated benzenediols. The aromatic intermediates were identified as trimethylsilyl ethers and dimethyl-t-butyl silyl ethers. A reaction scheme was proposed to describe the formation of aromatic intermediates based on coupling reactions of resonance-stabilized 2-CP radicals generated by electrophilic attack of reactive hydroxyl radicals. The pattern of aromatic intermediates identified in the Fenton solutions coincided well with that predicted on the basis of oxidative coupling reactions. In addition to coupling of stabilized radicals, aromatic intermediates can be formed by addition of organoradicals onto neutral analyte molecules. The findings presented in this contribution are considered crucial for the design and optimization of Fenton-based remediation devoted either to wastewater treatment under economically feasible conditions or to in situ groundwater treatment where poorly controlled reaction conditions prevail.
Bioresource Technology | 2014
Juergen Poerschmann; Barbara Weiner; Harald Wedwitschka; I. Baskyr; Robert Koehler; Frank-Dieter Kopinke
The wet biomass brewers spent grain was subjected to hydrothermal carbonization to produce biocoal. Mass balance considerations indicate for about two thirds of the organic carbon of the input biomass to be transferred into the biocoal. The van Krevelen plot refers to a high degree of defunctionalization with decarboxylation prevailing over dehydration. Calorific data revealed a significant energy densification of biocoals as compared to the input substrate. Sorption coefficients of organic analytes covering a wide range of hydrophobicities and polarities on biocoal were similar to those for dissolved humic acids. Data from GC/MS analysis indicated that phenols and benzenediols along with fatty acids released from bound lipids during the hydrothermal process constituted abundant products. Our findings demonstrate that the brewers spent grain by-product is a good feedstock for hydrothermal carbonization to produce biocoal, the latter offering good prospects for energetic and soil-improving application fields.
Chemosphere | 2015
Juergen Poerschmann; Barbara Weiner; Silke Woszidlo; Robert Koehler; Frank-Dieter Kopinke
Poly(vinyl chloride) (PVC) was subjected to hydrothermal carbonization in subcritical water at 180-260 °C. Dehydrochlorination increased with increasing reaction temperature. The release of chlorine was almost quantitative above ∼235 °C. The fraction of organic carbon (OC) recovered in the hydrochar decreased with increasing operating temperature from 93% at 180 °C to 75% at 250 °C. A wide array of polycyclic aromatic hydrocarbons (PAHs) could be detected in the aqueous phase, but their combined concentration amounted to only ∼140 μg g(-1) PVC-substrate at 240 °C. A pathway for the formation of cyclic hydrocarbons and O-functionalized organics was proposed. Chlorinated hydrocarbons including chlorophenols could only be identified at trace levels (low ppb). Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) could not be detected. The sorption potential of the hydrochar turned out to be very low, in particular for polar organic pollutants. Our results provide strong evidence that hydrothermal carbonization of household organic wastes which can be tied to co-discarded PVC-plastic residues is environmentally sound regarding the formation of toxic organic products. Following these findings, hydrothermal treatment of PVC-waste beyond operating temperatures of ∼235 °C to allow complete release of organic chlorine should be further pursued.
Bioresource Technology | 2013
Juergen Poerschmann; I. Baskyr; Barbara Weiner; Robert Koehler; Harald Wedwitschka; Frank-Dieter Kopinke
Hydrothermal carbonization (HTC) is an emerging technology to treat wet biomasses aimed at producing a biochar material. Herein, olive mill wastewater (OMW) was subjected to HTC. Mass balance considerations provide evidence that the yield of biochar is low (~30%, w/w), which is associated with a low fraction of carbohydrates in OMW. The combination of different preparation schemes, pre-chromatographic derivatization reactions and GC/MS analysis for the analysis of organic compounds in aqueous HTC-solutions allowed to identify and quantify a wide array of analytes which belong either to intrinsic constituents of OMW or to characteristic HTC-breakdown products. Biophenols, such as hydroxyl-tyrosol (OH-Tyr), tyrosol (Tyr) account for the most abundant members of the first group. Most abundant breakdown products include phenol and benzenediols as well as short-chain organic acids. Secoiridoids, such as decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon, all of them being typical components of OMW, are less abundant in HTC-solutions.
Aquatic Sciences | 2009
Jörg Tittel; Ines Wiehle; Nicola Wannicke; Heike Kampe; Juergen Poerschmann; Jutta Meier; Norbert Kamjunke
Abstract.Terrestrial-derived dissolved organic carbon (DOC) contributes significantly to the energetic basis of many aquatic food webs. Although heterotrophic bacteria are generally considered to be the sole consumers of DOC, algae and cyanobacteria of various taxonomic groups are also capable of exploiting this resource. We tested the hypothesis that algae can utilise DOC in the presence of bacteria if organic resources are supplied in intervals by photolysis of recalcitrant DOC. In short-term uptake experiments, we changed irradiation in the range of minutes. As model substrates, polymers of radiolabelled coumaric acid (PCA) were used, which during photolysis are known to release aromatic compounds comparable to terrestrial-derived and refractory DOC. Three cultured freshwater algae readily assimilated PCA photoproducts equivalent to a biomass-specific uptake of 5–60% of the bacterial competitors present. Algal substrate acquisition did not depend on whether PCA was photolysed continuously or in intervals. However, the data show that photoproducts of terrestrial DOC can be a significant resource for osmotrophic algae. In long-term growth experiments, interval light was applied one hour per day. We allowed cultured Chlamydomonas to compete for ambient DOC of low concentration. We found higher abundances of Chlamydomonas when cultures were irradiated intermittently rather than continuously. These data suggest that photolysis of DOC supports algal heterotrophy, and potentially facilitates growth, when light fluctuations are large, as during the diurnal light cycle. We concluded that osmotrophic algae can efficiently convert terrestrial carbon into the biomass of larger organisms of aquatic food webs.
Journal of Agricultural and Food Chemistry | 2008
Juergen Poerschmann; Stefan Rauschen; Uwe Langer; Juergen Augustin; Tadeusz Górecki
Bt-maize MON88017, its near-isogenic line DKC5143, and the two conventional varieties DK315 and Benicia were subjected to tetramethylammonium hydroxide (TMAH)-induced thermochemolysis to reveal molecular level lignin patterns. MON88017 is genetically modified to express the Cry3Bb1 protein aimed at the Western corn rootworm Diabrotica virgifera virgifera, a serious threat for European maize production. The results indicated that roots of the Bt-maize were characterized by a slightly enhanced total lignin content (by approximately 7%) compared to the near-isogenic line, whereas the molecular-based patterns, expressed by the relative fractions of p-hydroxyphenyl, guaiacyl, and syringyl breakdown products (P-, G-, and S-units, respectively) were virtually identical for both lines. No effects regarding either total lignin or molecular-based lignin patterns could be observed for leaves, indicating that biogenesis of lignin was not pleiotropically affected by the genetic modification. Significant differences for both total lignin and different lignin proxies existed between the conventional maize lines. Molecular level lignin analysis by means of TMAH-induced thermochemolysis is able to distinguish conventional maize varieties. Further work is necessary to evaluate lignin-related pleiotropic effects in genetically modified maize plants. The validation and application of a commonly accepted method for lignin analysis, capable of characterizing lignin at the molecular level, is a prerequisite.
Chemosphere | 2013
Juergen Poerschmann; Barbara Weiner; I. Baskyr
Organic components in olive mill wastewater (OMW) were analyzed by exhaustive solvent extraction of the lyophilisate followed by pre-chromatographic derivatization techniques and GC/MS-analysis of the extracts. Simple biophenols including tyrosol (Tyr), hydroxytyrosol (OH-Tyr) and homovanillic alcohol as well as complex biophenols including decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon proved most abundant analytes. Hydroxylated benzoic and cinnamic acids are less abundant, which may indicate a humification process to have occurred. The pattern of organic components obtained from native OMW was compared with that obtained from hydrothermal carbonization (HTC) of the waste product. Former results provided strong evidence that HTC of OMW at 220°C for 14h results in an almost complete hydrolysis of complex aglycons. However, simple biophenols were not decomposed on hydrothermal treatment any further. Phenol and benzenediols as well as low molecular weight organic acids proved most abundant analytes which were generated due to HTC. Similarly to aglycons, lipids including most abundant acylglycerines and less abundant wax esters were subjected almost quantitatively to hydrolysis under hydrothermal conditions. Fatty acids (FAs) released from lipids were further decomposed. The pathways of volatile analytes in both native OMW and aqueous HTC solutions were studied by solventless headspace-Solid Phase Micro Extraction. Basically, a wide array low molecular alcohols and ketones occurring in native OMW survived the HTC process.