Juergen Schaffner-Bielich
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juergen Schaffner-Bielich.
European Physical Journal A | 2014
Tobias Fischer; Matthias Hempel; Irina Sagert; Yudai Suwa; Juergen Schaffner-Bielich
We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post-bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densities.
Physical Review C | 2006
Stefan B. Ruester; Matthias Hempel; Juergen Schaffner-Bielich
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.
Physical Review D | 2013
Bruno W. Mintz; Rudnei O. Ramos; Juergen Schaffner-Bielich; Rainer Stiele
We obtain the in-medium effective potential of the three-flavor Polyakov-Quark-Meson model as a real function of real variables in the Polyakov loop variable, to allow for the study of all possible minima of the model. At finite quark chemical potential, the real and imaginary parts of the effective potential, in terms of the Polyakov loop variables, are made apparent, showing explicitly the fermion sign problem of the theory. The phase diagram and other equilibrium observables, obtained from the real part of the effective potential, are calculated in the mean-field approximation. The obtained results are compared to those found with the so-called saddle-point approach. Our procedure also allows the calculation of the surface tension between the chirally broken and confined phase, and the chirally restored and deconfined phase. The values of surface tension we find for low temperatures are very close to the ones recently found for two-flavor chiral models. Some consequences of our results for the early Universe, for heavy-ion collisions, and for proto-neutron stars are briefly discussed.
European Journal of Physics | 2006
Irina Sagert; Matthias Hempel; Carsten Greiner; Juergen Schaffner-Bielich
We report on an undergraduate student project initiated in the summer semester of 2004 with the aim to establish equations of state for white dwarfs and neutron stars for computing mass–radius relations as well as corresponding maximum masses. First, white dwarfs are described by a Fermi gas model of degenerate electrons and neutrons, and effects from general relativity are examined. For neutron star matter, the influence of a finite fraction of protons and electrons and of strong nucleon–nucleon interactions are studied. The nucleon–nucleon interactions are introduced within a Hartree–Fock scheme using a Skyrme-type interaction. Finally, masses and radii of neutron stars are computed for a given central pressure.
Physical Review D | 2015
Andreas Zacchi; Juergen Schaffner-Bielich; Rainer Stiele
The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses implies strong constraints on the properties of dense matter in the core of compact stars. Effective models of QCD aiming to describe neutron star matter can thereby be considerably constrained. In this context, a chiral quark-meson model based on a SU(3) linear
Physics Letters B | 2014
Rainer Stiele; Eduardo S. Fraga; Juergen Schaffner-Bielich
\sigma
Physical Review D | 2016
Rainer Stiele; Juergen Schaffner-Bielich
-model with a vacuum pressure and vector meson exchange is discussed in this work. The impact of its various terms and parameters on the equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars with two solar masses are feasible within this approach. Large vector meson coupling constant and a small vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made of absolutely stable strange quark matter, so called strange stars, turn out to be restricted to a quite small parameter range.
Physical Review D | 2015
Laura Tolos; Juergen Schaffner-Bielich
Abstract We investigate the phase structure of strongly interacting matter at non-vanishing isospin before the onset of pion condensation in the framework of the unquenched Polyakov–Quark-Meson model with 2 + 1 quark flavors. We show results for the order parameters and all relevant thermodynamic quantities. In particular, we obtain a moderate change of the pressure with isospin at vanishing baryon chemical potential, whereas the chiral condensate decreases more appreciably. We compare the effective model to recent lattice data for the decrease of the pseudo-critical temperature with the isospin chemical potential. We also demonstrate the major role played by the value of the pion mass in the curvature of the transition line, and the need for lattice results with a physical pion mass. Limitations of the model at nonzero chemical potential are also discussed.
arXiv: High Energy Physics - Phenomenology | 2013
Rainer Stiele; Lisa Marie Haas; Jens Braun; Jan M. Pawlowski; Juergen Schaffner-Bielich
Unquenching of the Polyakov-loop potential showed to be an important improvement for the description of the phase structure and thermodynamics of strongly-interacting matter at zero quark chemical potentials with Polyakov-loop extended chiral models. This work constitutes the first application of the quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the chiral and deconfinement phase transition also at small temperatures and large quark chemical potentials. The build up of the surface tension in the Polyakov-loop extended Quark-Meson model is explored by investigating the two and 2+1-flavour Quark-Meson model and analysing the impact of the Polyakov-loop extension. In general, the order of magnitude of the surface tension is given by the chiral phase transition. The coupling of the chiral and deconfinement transition with the unquenched Polyakov-loop potential leads to the fact that the Polyakov-loop contributes at all temperatures.
Physical Review D | 2016
Thorben Graf; Juergen Schaffner-Bielich; Eduardo S. Fraga
We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron star matter and white dwarf material. We consider non-self annihilating dark matter with an equation-of-state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 10 −6 M⊙.