Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juergen Weese is active.

Publication


Featured researches published by Juergen Weese.


Medical Physics | 2001

Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images.

Graeme P. Penney; Pg Batchelor; Derek L. G. Hill; David J. Hawkes; Juergen Weese

We present a validation of an intensity based two- to three-dimensional image registration algorithm. The algorithm can register a CT volume to a single-plane fluoroscopy image. Four routinely acquired clinical data sets from patients who underwent endovascular treatment for an abdominal aortic aneurysm were used. Each data set was comprised of two intraoperative fluoroscopy images and a preoperative CT image. Regions of interest (ROI) were drawn around each vertebra in the CT and fluoroscopy images. Each CT image ROI was individually registered to the corresponding ROI in the fluoroscopy images. A cross validation approach was used to obtain a measure of registration consistency. Spinal movement between the preoperative and intraoperative scene was accounted for by using two fluoroscopy images. The consistency and robustness of the algorithm when using two similarity measures, pattern intensity and gradient difference, was investigated. Both similarity measures produced similar results. The consistency values were rotational errors below 0.74 degree and in-plane translational errors below 0.90 mm. These errors approximately relate to a two-dimensional projection error of 1.3 mm. The failure rate was less than 8.3% for three of the four data sets. However, for one of the data sets a much larger failure rate (28.5%) occurred.


Interface Focus | 2011

euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling

Nic Smith; Adelaide de Vecchi; Matthew McCormick; David Nordsletten; Oscar Camara; Alejandro F. Frangi; Hervé Delingette; Maxime Sermesant; Jatin Relan; Nicholas Ayache; Martin W. Krueger; Walther H. W. Schulze; Rod Hose; Israel Valverde; Philipp Beerbaum; Cristina Staicu; Maria Siebes; Jos A. E. Spaan; Peter Hunter; Juergen Weese; Helko Lehmann; Dominique Chapelle; Reza Rezavi

The loss of cardiac pump function accounts for a significant increase in both mortality and morbidity in Western society, where there is currently a one in four lifetime risk, and costs associated with acute and long-term hospital treatments are accelerating. The significance of cardiac disease has motivated the application of state-of-the-art clinical imaging techniques and functional signal analysis to aid diagnosis and clinical planning. Measurements of cardiac function currently provide high-resolution datasets for characterizing cardiac patients. However, the clinical practice of using population-based metrics derived from separate image or signal-based datasets often indicates contradictory treatments plans owing to inter-individual variability in pathophysiology. To address this issue, the goal of our work, demonstrated in this study through four specific clinical applications, is to integrate multiple types of functional data into a consistent framework using multi-scale computational modelling.


Medical Imaging 1999: Image Processing | 1999

Fast voxel-based 2D/3D registration algorithm using a volume rendering method based on the shear-warp factorization

Juergen Weese; Roland Goecke; Graeme P. Penney; Paul Desmedt; Thorsten M. Buzug; Heidrun Schumann

2D/3D registration makes it possible to use pre-operative CT scans for navigation purposes during X-ray fluoroscopy guided interventions. We present a fast voxel-based method for this registration task, which uses a recently introduced similarity measure (pattern intensity). This measure is especially suitable for 2D/3D registration, because it is robust with respect to structures such as a stent visible in the X-ray fluoroscopy image but not in the CT scan. The method uses only a part of the CT scan for the generation of digitally reconstructed radiographs (DRRs) to accelerate their computation. Nevertheless, computation time is crucial for intra-operative application and a further speed-up is required, because numerous DRRs must be computed. For that reason, the suitability of different volume rendering methods for 2D/3D registration has been investigated. A method based on the shear-warp factorization of the viewing transformation turned out to be especially suitable and builds the basis of the registration algorithm. The algorithm has been applied to images of a spine phantom and to clinical images. For comparison, registration results have been calculated using ray-casting. The shear-warp factorization based rendering method accelerates registration by a factor of up to seven compared to ray-casting without degrading registration accuracy. Using a vertebra as feature for registration, computation time is in the range of 3-4s (Sun UltraSparc, 300 MHz) which is acceptable for intra-operative application.


Medical Image Analysis | 2008

Model-based blood flow quantification from rotational angiography

Irina Waechter; Joerg Bredno; Roel Hermans; Juergen Weese; Dean C. Barratt; David J. Hawkes

For assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) information on vessel morphology and haemodynamics. Rotational angiography is routinely used to determine the 3D geometry. In this paper, we propose a method to exploit the same acquisition to determine the blood flow waveform and the mean volumetric flow rate in the large cerebral arteries. The method uses a model of contrast agent dispersion to determine the flow parameters from the spatial and temporal progression of the contrast agent concentration, represented by a flow map. Furthermore, it overcomes artefacts due to the rotation (overlapping vessels and foreshortened vessels at some projection angles) of the C-arm using a reliability map. The method was validated on images from different phantom experiments. We analysed different properties of the flow quantification method, including the influence of noise and the influence of the length of the analysed blood vessel. In most cases, the relative error was between 5% and 10% for the volumetric mean flow rate and between 10% and 15% for the blood flow waveform. The manual interaction took at most one minute and the computational time for the flow quantification was between 4 and 20 min on a PC. From this, we conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions.


Medical Imaging 2006: Image Processing | 2006

Toward fully automatic object detection and segmentation

Hauke Schramm; Olivier Ecabert; Jochen Peters; Vasanth Philomin; Juergen Weese

An automatic procedure for detecting and segmenting anatomical objects in 3-D images is necessary for achieving a high level of automation in many medical applications. Since todays segmentation techniques typically rely on user input for initialization, they do not allow for a fully automatic workflow. In this work, the generalized Hough transform is used for detecting anatomical objects with well defined shape in 3-D medical images. This well-known technique has frequently been used for object detection in 2-D images and is known to be robust and reliable. However, its computational and memory requirements are generally huge, especially in case of considering 3-D images and various free transformation parameters. Our approach limits the complexity of the generalized Hough transform to a reasonable amount by (1) using object prior knowledge during the preprocessing in order to suppress unlikely regions in the image, (2) restricting the flexibility of the applied transformation to only scaling and translation, and (3) using a simple shape model which does not cover any inter-individual shape variability. Despite these limitations, the approach is demonstrated to allow for a coarse 3-D delineation of the femur, vertebra and heart in a number of experiments. Additionally it is shown that the quality of the object localization is in nearly all cases sufficient to initialize a successful segmentation using shape constrained deformable models.


Journal of Neurotrauma | 2016

Differences in Regional Brain Volumes Two Months and One Year after Mild Traumatic Brain Injury

Lyubomir Zagorchev; Carsten Meyer; Thomas Stehle; Fabian Wenzel; Stewart Young; Jochen Peters; Juergen Weese; Keith D. Paulsen; Matthew A. Garlinghouse; James Ford; Robert M. Roth; Laura A. Flashman; Thomas W. McAllister

Conventional structural imaging is often normal after mild traumatic brain injury (mTBI). There is a need for structural neuroimaging biomarkers that facilitate detection of milder injuries, allow recovery trajectory monitoring, and identify those at risk for poor functional outcome and disability. We present a novel approach to quantifying volumes of candidate brain regions at risk for injury. Compared to controls, patients with mTBI had significantly smaller volumes in several regions including the caudate, putamen, and thalamus when assessed 2 months after injury. These differences persisted but were reduced in magnitude 1 year after injury, suggesting the possibility of normalization over time in the affected regions. More pronounced differences, however, were found in the amygdala and hippocampus, suggesting the possibility of regionally specific responses to injury.


Medical Physics | 2008

Using flow information to support 3D vessel reconstruction from rotational angiography

Irina Waechter; Joerg Bredno; Juergen Weese; Dean C. Barratt; David J. Hawkes

For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25mm, respectively. For the experimental datasets, the mean absolute error of the 3D centerline was 0.45mm. Under pulsatile and nonpulsatile conditions, flow information can be used to enable a 3D vessel reconstruction from rotational angiography with inflow and possibly outflow of contrast agent. We found that the most important parameter for the quality of the reconstruction of centerline and radii is the range through which the x-ray system rotates in the time span of the injection. Good results were obtained if this range was at least 135°. As a standard c-arm can rotate 205°, typically one third of the acquisition can show inflow or outflow of contrast agent, which is required for the quantification of blood flow from rotational angiography.


Medical Imaging 2000: Image Processing | 2000

Grey-value-based 3D registration of functional MRI time-series: comparison of interpolation order and similarity measure

Thomas Netsch; Peter Roesch; Juergen Weese; Arianne Van Muiswinkel; Paul Desmedt

The analysis of functional MR images of the brain such as FMRI and neuro perfusion is significantly limited by movement of the head during image acquisition. Already small motions introduce artifacts in voxel-based statistical analysis and restrict the assessment of functional information. The retrospective compensation of head motion is usually addressed by image registration techniques which spatially align the images of the time-series. In this paper we investigate the relevance of intermediate interpolation during the registration process, similarity measure and optimization scheme by means of statistical consistency of the registration results. Experiments show that cubic and quartic interpolation remarkably improve the consistency when compared to linear methods. The use of larger interpolation kernels, however, does not result in further improvements. Measures based on the mean squared error are successfully applied to FMRI time- series which provide constant tissue-to-image transfer. However, they are not suitable for neuro perfusion imaging since the change of image intensity during the inflow of the contrast agent affords measures typically applied in multi- modality registration. Our results indicate that a recently proposed measure based on local correlation is preferable to mutual information in the case of neuro perfusion.


Medical Imaging 2003: Image Processing | 2003

3D vessel axis extraction using 2D calibrated x-ray projections for coronary modeling

Stewart Young; Babak Movassaghi; Juergen Weese; Volker Rasche

A new approach for 3D vessel centreline extraction using multiple, ECG-gated, calibrated X-ray angiographic projections of the coronary arteries is described. The proposed method performs direct extraction of 3D vessel centrelines, without the requirement to either first compute prior 2D centreline estimates, or perform a complete volume reconstruction. A front propagation-based algorithm, initialised with one or more 3D seed points, is used to explore a volume of interest centred on the projection geometrys isocentre. The expansion of a 3D region is controlled by forward projecting boundary points into all projection images to compute vessel response measurements, which are combined into a 3D propagation speed so that the front expands rapidly when all projection images yield high vessel responses. Vessel centrelines are obtained by reconstructing the paths of fastest propagation. Based on these axes, a volume model of the coronaries can be constructed by forward projecting axis points into the 2D images where the borders are detected. The accuracy of the method was demonstrated via a comparison of automatically extracted centrelines with 3D centrelines derived from manually segmented projection data.


Medical Imaging 2001: Image Processing | 2001

Template selection and rejection for robust nonrigid 3D registration in the presence of large deformations

Peter Roesch; Torsten Mohs; Thomas Netsch; Marcel Quist; Graeme P. Penney; David J. Hawkes; Juergen Weese

The purpose of the proposed template propagation method is to support the comparative analysis of image pairs even when large deformations (e.g. from movement) are present. Starting from a position where valid starting estimates are known, small sub-volumes (templates) are registered rigidly. Propagating registration results to neighboring templates, the algorithm proceeds layer by layer until corresponding points for the whole volume are available. Template classification is important for defining the templates to be registered, for propagating registration results and for selecting successfully registered templates which finally represent the motion vector field. This contribution discusses a template selection and classification strategy based on the analysis of the similarity measure in the vicinity of the optimum. For testing the template propagation and classification methods, deformation fields of four volume pairs exhibiting considerable deformations have been estimated and the results have been compared to corresponding points picked by an expert. In all four cases, the proposed classification scheme was successful. Based on homologous points resulting from template propagation, an elastic transformation was performed.

Collaboration


Dive into the Juergen Weese's collaboration.

Researchain Logo
Decentralizing Knowledge