Jufang Chi
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jufang Chi.
Journal of Geriatric Cardiology | 2014
Hangyuan Guo; Fukang Xu; Haitao Lv; Longbin Liu; Zheng Ji; Xiaoya Zhai; Weiliang Tang; Jufang Chi
Background Hyperhomocysteine is an independent risk factor of coronary heart disease (CHD). However, whether hyperhomocysteine affects the progression of atherosclerosis is unclear. In the present study, we examined the effect of hyperhomocysteine on the formation of atherosclerosis in low-density lipoprotein receptor-deficient (LDLr−/−) mice. Methods Forty-eight 7-week-old LDLr−/− mice were assigned to the following groups: mice fed a standard rodent diet (control group), mice fed a high-methionine diet (high-methionine group), mice fed a high-fat diet (high-fat group), and mice fed a diet high in both methionine and fat (high-methionine and high-fat group). At the age of 19, 23, and 27 weeks, four mice at each interval in every group were sacrificed. Results At the end of the study, mice did not show atherosclerotic lesions in the aortic sinus and aortic surface until 27 weeks old in the control group. However, atherosclerotic lesions developed in the other three groups at 19 weeks. The amount of atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P < 0.001). Atherosclerotic lesions on the aortic surface in the high-methionine and high-fat group were the most severe. The mean area of atherosclerotic lesions in the aortic sinus compared with atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P < 0.001). Atherosclerotic lesions in the aortic sinus in the high-methionine and high-fat group were the most severe. Conclusions Homocysteinemia accelerates atherosclerotic lesions and induces early atherosclerosis independently in LDLr−/− mice. Reducing the level of homocysteinemia may be beneficial for prevention and treatment of CHD.
Journal of Zhejiang University-science B | 2013
Ya-fei Shi; Jufang Chi; Weiliang Tang; Fukang Xu; Longbin Liu; Zheng Ji; Haitao Lv; Hangyuan Guo
ObjectiveTo test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine.MethodsRat VSMCs were incubated with different concentrations of homocysteine (50–5 000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10−9–10−5 mol/L) were added when VSMCs were induced with 1 000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h.ResultsHomocysteine (50–1 000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5 000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50–5 000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin.ConclusionsHomocysteine (50–1 000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and activation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.
Journal of Cardiovascular Pharmacology | 2016
Liping Meng; Longbin Liu; Changzuan Zhou; Sunlei Pan; Xiaoya Zhai; Chengjian Jiang; Yan Guo; Zheng Ji; Jufang Chi; Fang Peng; Hangyuan Guo
Abstract: The beneficial effect of Chinese rice wine on atherosclerosis has been proved, but the exact components that have the cardiovascular protective effect are still unknown. This study aimed to explore the exact ingredients in Chinese rice wine that could inhibit homocysteine (Hcy)-induced vascular smooth muscle cell (VSMC) proliferation and migration. VSMCs were divided into 7 groups: control, Hcy (1 mmol/L), Hcy + oligosaccharide, Hcy + polypeptides, Hcy + polyphenols, Hcy + alcohol, and Hcy + Chinese rice wine. methyl thiazolyl tetrazolium (MTT) assay, Transwell chambers, and wound-healing assay were used to test the proliferation and migratory ability of the VSMCs. Western blot and gelatin zymography were used to investigate the expressions and activities of metal matrix proteinase 2/9 (MMP-2/9) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in VSMCs. Polypeptides and polyphenols in the Chinese rice wine reduced the proliferation and migration ability of the VSMCs. Furthermore, they also decreased the expression and activity of MMP-2/9 but had no obvious impact on the expression of TIMP-2 in each group. This study further confirms that polypeptides and polyphenols in the Chinese rice wine could inhibit Hcy-induced proliferation and migration of VSMCs and maintain the balance between matrix metalloproteinases (MMPs) and TIMPs.
Journal of Nutrition and Food Sciences | 2015
Zheng Ji; Hangyuan Guo; Jufang Chi; Liping Meng; Xiaoya Zhai; Changzuan Zhou; Weiliang Tang; Fukang Xu; Longbin Liu
Background: The effects of Chinese yellow wine on the production of homocysteine (Hcy) induced intracellular MMP-2 in cultured rats vascular endothelial cells (VECs) has not been investigated. Methods: Isolation, cultivation, purification and identification of vascular endothelial cells of rat thoracic aorta in vitro were conducted. The VECs in passages 3 to 4 were used in all studies. HCY was used to induce VECs to over expressing MMP-2. Cells were divided into 5 groups: Control, Hcy, Hcy+yellow wine, Hcy+red wine, Hcy+ethanol and the cells were given different treatment for 48 h. The mRNA expression of MMP-2 was detected by FQ-PCR. The western blotting and gelatin zymography were applied to test the protein levels and the enzymatic activity of MMP-2. Results: Hcy could significantly increase the expression and activity of MMP-2 compared with the control group, and could reach the maximum at 500 μ mol/L, cultured for 48 h. Compared with those in Hcy group, the expression and activity of MMP-2 in yellow wine and red wine groups was significantly decreased. No significant difference was shown as between the ethanol group and the Hcy group and no significant discrepancy between the yellow wine and red wine group was found. Conclusions: The result suggest that Hcy promotes the expression and activity of MMP-2, which may play an important role in pathogenesis of atherosclerosis (AS). Treatment with yellow wine or red wine decreases Hcy-induced MMP-2 production in VECs. The attenuation of MMP-2 activation by yellow wine and red wine might contribute to their beneficial effects on the cardiovascular system.
Medical Science Monitor | 2017
Jufang Chi; Liping Meng; Sunlei Pan; Hui Lin; Xiaoya Zhai; Longbin Liu; Changzuan Zhou; Chengjian Jiang; Hangyuan Guo
Background Developing a simple and efficient method of obtaining primary cultured VSMCs is necessary for basic cardiovascular research. Material/Methods The procedure of our new method mainly includes 6 steps: isolation of the aortic artery, removal of the fat tissue around the artery, separation of the media, cutting the media into small tissue blocks, transferring the tissue blocks to cell culture plates, and incubation until the cells reach confluence. The cells were identified as VSMCs by morphology and immunofluorescence. Then, VSMCs obtained by this new tissue explants method, the traditional tissue explants method, the enzyme digestion method, and A7r5 cell line were divided into 4 groups. The purity of cells was test by multiple fluorescent staining. Western blotting was used to investigate the phenotype of VSMCs obtained by different methods. Results Cells began to grow out at about 8 days and became relatively confluent within 16 days. Compared with VSMCs from the traditional tissue explants method and enzyme digestion method or A7r5 cell line, VSMCs obtained by our method showed higher purity and manifested a more “contractile” phenotype characteristic. Conclusions We have conquered the disadvantages in the previous primary culture methods and established a simple and reliable way to isolate and culture rat aortic VSMCs with high purity and stability.
Acta Cardiologica | 2016
Fei Zhao; Zheng Ji; Jufang Chi; Weiliang Tang; Xiaoya Zhai; Liping Meng; Hangyuan Guo
Objective The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor- α(TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). Methods We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF- α+ rosuvastatin (10 μmol/L), (4) TNF- α+ ethanol 0.5%, (5) TNF- α+ yellow wine 0.5%, (6) TNF- α+ ethanol 1.0%, (7) TNF- α+ yellow wine 1.0%, (8) TNF- α+ ethanol 1.5%, and (9) TNF- α+ yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Results Compared with the TNF-á group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Conclusion Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.
Journal of Cellular and Molecular Medicine | 2018
Sunlei Pan; Huahua Liu; Feidan Gao; Hangqi Luo; Hui Lin; Liping Meng; Chengjian Jiang; Yan Guo; Jufang Chi; Hangyuan Guo
Many studies support the cardioprotective effects of folic acid (FA). We aimed to evaluate the utility of FA supplementation in preventing the development of atherosclerotic in low‐density lipoprotein receptor‐deficient (LDLR−/−) mice and to elucidate the molecular processes underlying this effect. LDLR−/− mice were randomly distributed into four groups: control group, HF group, HF + FA group and the HF + RAPA group. vascular smooth muscle cells (VSMCs) were divided into the following four groups: control group, PDGF group, PDGF + FA group and PDGF + FA + RAPA group. Blood lipid levels, oxidative stress and inflammatory cytokines were measured. Atherosclerosis severity was evaluated with oil red O staining. Haematoxylin and eosin (H&E) staining was used to assess atherosclerosis progression. Immunohistochemical staining was performed with antismooth muscle α‐actin (α‐SMA) antibodies and anti‐osteopontin (OPN) antibodies that demonstrate VSMC dedifferentiation. The protein expression of α‐SMA, OPN and mechanistic target of rapamycin (mTOR)/p70S6K signalling was detected by Western blot analysis. FA and rapamycin reduced serum levels of total cholesterol, triacylglycerol, LDL, inhibiting oxidative stress and the inflammatory response. Oil red O and H&E staining demonstrated that FA and rapamycin inhibited atherosclerosis. FA and rapamycin treatment inhibited VSMC dedifferentiation in vitro and in vivo, and FA and rapamycin attenuated the mTOR/p70S6K signalling pathway. Our findings suggest that FA attenuates atherosclerosis development and inhibits VSMC dedifferentiation in high‐fat‐fed LDLR−/− mice by reduced lipid levels and inhibiting oxidative stress and the inflammatory response through mTOR/p70S6K signalling pathway.
International Journal of Cardiology | 2018
Hui Lin; Tingjuan Ni; Jie Zhang; Liping Meng; Feidan Gao; Sunlei Pan; Hangqi Luo; Fukang Xu; Guomei Ru; Jufang Chi; Hangyuan Guo
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Journal of Pharmacological Sciences | 2014
Xiaoya Zhai; Jufang Chi; Weiliang Tang; Zheng Ji; Fei Zhao; Chengjian Jiang; Haitao Lv; Hangyuan Guo
Cardiovascular Drugs and Therapy | 2012
Hangyuan Guo; Haitao Lv; Weiliang Tang; Jufang Chi; Longbin Liu; Fukang Xu; Zheng Ji; Xiaoya Zhai; Fang Peng