Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jufeng Zheng is active.

Publication


Featured researches published by Jufeng Zheng.


Chemosphere | 2016

Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol

Dengxiao Zhang; Genxing Pan; Gang Wu; Grace Wanjiru Kibue; Lianqing Li; Xuhui Zhang; Jinwei Zheng; Jufeng Zheng; Kun Cheng; Stephen Joseph; Xiaoyu Liu

Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas.


FEMS Microbiology Ecology | 2014

Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil

Junhui Chen; Feng He; Xuhui Zhang; Xuan Sun; Jufeng Zheng; Jinwei Zheng

Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.


Science of The Total Environment | 2016

Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China

Jufeng Zheng; Junhui Chen; Genxing Pan; Xiaoyu Liu; Xuhui Zhang; Lianqing Li; Rongjun Bian; Kun Cheng; Zheng Jinwei

While numerous studies both in laboratory and field have showed short term impacts of biochar on soil microbial community, there have been comparatively few reports addressing its long term impacts particular in field condition. This study investigated the changes of microbial community activity and composition in a rice paddy four years after a single incorporation of biochar at 20 and 40t/ha. The results indicated that biochar amendment after four years increased soil pH, soil organic C (SOC), total N and C/N ratio and decreased bulk density, particularly for the 40t/ha treatment compared to the control (0t/ha). Though no significant difference was observed in soil basal respiration, biochar amendment increased soil microbial biomass C and resulted in a significantly lower metabolic quotient. Besides, dehydrogenase and β-glucosidase activities were significantly decreased under biochar amendment relative to the control. The results of Illumina Miseq sequencing showed that biochar increased α-diversity of bacteria but decreased that of fungi and changed both bacterial and fungal community structures significantly. Biochar did not change the relative abundances of majority of bacteria at phylum level with the exception of a significant reduction of Actinobacteria, but significantly changed most of bacterial groups at genus level, particularly at 40t/ha. In contrast, biochar significantly decreased the relative abundances of Ascomycota and Basidiomycota by 11% and 66% and increased the relative abundances of Zygomycota by 147% at 40t/ha compared to the non-amended soil. Redundancy analysis (RDA) indicated that biochar induced changes in soil chemical properties, such as pH, SOC and C/N, were important factors driving community composition shifts. This study suggested that biochar amendment may increase microbial C use efficiency and reduce some microorganisms that are capable of decomposing more recalcitrant soil C, which may help stabilization of soil organic matter in paddy soil in long term.


Journal of the Science of Food and Agriculture | 2015

Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment.

Muhammad Siddique Lashari; Yingxin Ye; Haishi Ji; Lianqing Li; Grace Wanjiru Kibue; Haifei Lu; Jufeng Zheng; Genxing Pan

BACKGROUND Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. RESULTS While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. CONCLUSION A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change.


PLOS ONE | 2012

Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China.

Yongzhuo Liu; Tong Zhou; David E. Crowley; Lianqing Li; Dawen Liu; Jinwei Zheng; Xinyan Yu; Genxing Pan; Qaiser Hussain; Xuhui Zhang; Jufeng Zheng

Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies.


Carbon Management | 2014

Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China

Li Qian; Lin Chen; Stephen Joseph; Genxing Pan; Lianqing Li; Jinwei Zheng; Xuhui Zhang; Jufeng Zheng; Xinyan Yu; Jiafang Wang

Background: Biochar from pyrolysis of biomass amended in soils to improve nitrogen use efficiency for enhancing crop productivity and mitigate climate change in agriculture has been well documented. However, application for soil amendment of biochar at high rates could be challenged with cost-effectiveness for small-scale household farms. Results: This study, by field testing four organic/inorganic compound fertilizers of biochars pyrolysed via different biowastes compared with conventional chemical fertilizer in a rice paddy, evidenced that biochar compound fertilizer application at a much lower rate of N input ensured rice productivity by improving N use efficiency and reduced GHG emission in rice production. Conclusion: Use of biowaste-converted biochars for organic/inorganic compound fertilizer can be an option to achieve high productivity and low carbon intensity along with saving N nitrogen fertilizer use in Chinese rice agriculture.


Science of The Total Environment | 2016

Biochar has no effect on soil respiration across Chinese agricultural soils.

Xiaoyu Liu; Jufeng Zheng; Dengxiao Zhang; Kun Cheng; Huimin Zhou; Afeng Zhang; Lianqing Li; Stephen Joseph; Pete Smith; David E. Crowley; Yakov Kuzyakov; Genxing Pan

Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils.


PLOS ONE | 2014

Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

Yuan Liu; Yongzhuo Liu; Yuanjun Ding; Jinwei Zheng; Tong Zhou; Genxing Pan; David E. Crowley; Lianqing Li; Jufeng Zheng; Xuhui Zhang; Xinyan Yu; Jiafang Wang

While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.


Chemosphere | 2012

Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

Xiangyun Song; Lianqing Li; Jufeng Zheng; Genxing Pan; Xuhui Zhang; Jinwei Zheng; Qaiser Hussain; Xiaojun Han; Xinyan Yu

While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, P<0.01). The increase in SOC under MSA was found higher in soils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in Chinas rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin.


Environmental Management | 2016

Farmers’ Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China

Grace Wanjiru Kibue; Xiaoyu Liu; Jufeng Zheng; Xuhui Zhang; Genxing Pan; Lianqing Li; Xiaojun Han

Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers’ perceptions of climate variability and adaptation. Yet, without an understanding of farmers’ perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers’ perceptions of climate variability. We found that farmers’ were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers’ characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads’ education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers’ perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China’s agricultural assets.

Collaboration


Dive into the Jufeng Zheng's collaboration.

Top Co-Authors

Avatar

Genxing Pan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lianqing Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuhui Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinwei Zheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kun Cheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rongjun Bian

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Joseph

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Junhui Chen

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge