Juhan Subbi
National Institute of Chemical Physics and Biophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juhan Subbi.
Thrombosis Research | 1998
Jüri Siigur; Mari Samel; Külli Tõnismägi; Juhan Subbi; Ene Siigur; Anthony T. Tu
Lebetase, the fibrinolytic enzyme isolated from Vipera lebetina (Levantine viper) snake venom is a metalloenzyme that contains one mole of Zn2+ and one mole of Ca2+ per mole of protein. Lebetase is inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for holding the structure. Vipera lebetina venom contains several isoforms of lebetase in the interval of pI 4.6-5.4. Two lebetase fractions I (pI of the main component 5.0) and II (pI of the main component 5.3) degrade fibrin and fibrinogen by hydrolysis of the alpha and beta chains. The molecular weights of the cleavage products produced by the two different lebetase fractions are identical. The metal ions, Cd2+, Cu2+, Co2+, inhibit fibrinolytic and caseinolytic activity of lebetase I and II. Using mass spectrometry we characterized differences in molecular masses of lebetase I and II (22719 Da and 22912 Da). Vipera lebetina venom from a single snake contains mainly one form of lebetase. Lebetase I is more stable at low pH than lebetase II. The lebetases I and II inhibit platelet aggregation induced by ADP in a dose-dependent manner.
Biochimica et Biophysica Acta | 2001
Ene Siigur; Külli Tõnismägi; Katrin Trummal; Mari Samel; Heiki Vija; Juhan Subbi; Jüri Siigur
Our studies of the venom from the Levantine viper Vipera lebetina have demonstrated the existence of both coagulants and anticoagulants of the hemostatic system in the same venom. We showed that V. lebetina venom contains factor X activator (VLFXA) and factor V activator, fibrinolytic enzymes. VLFXA was separated by gel filtration on Sephadex G-100 superfine and ion exchange chromatography on CM-cellulose and on TSK-DEAE (for HPLC) columns. VLFXA is a glycoprotein composed of a heavy chain (57.5 kDa) and two light chains (17.4 kDa and 14.5 kDa) linked by disulfide bonds. VLFXA has multiple molecular forms distinguished by their isoelectric points. The differences in their pI values may be caused by dissimilarities in the respective charged carbohydrate content or in the primary sequence of amino acids. We synthesized 6-9 amino acid residues containing peptides according to physiological cleavage regions of human factor X and human factor IX. The peptides (Asn-Asn-Leu-Thr-Arg-Ile-Val-Gly-Gly - factor X fragment, and Asn-Asp-Phe-Thr-Arg-Val-Val-Gly-Gly - factor IX fragment) were used as substrates for direct assay of VLFXA. Cleavage products of peptide hydrolysis and the molecular masses of cleavage products of human factor X were determined by MALDI-TOF MS. The MALDI-TOF MS was highly efficient for the recovery and identification of peptides released by VLFXA hydrolysis. We can conclude that VLFXA cleaves the Arg(52)-Ile(53) bond in the heavy chain of human factor X and the Arg(226)-Val(227) bond in human factor IX precursor. VLFXA could not activate prothrombin nor had any effect on fibrinogen, and it had no arginine esterase activity toward benzoylarginine ethyl ester.
Biochimica et Biophysica Acta | 2000
Katrin Trummal; Heiki Vija; Juhan Subbi; Jüri Siigur
Lebetase is a direct-acting fibrinolytic zinc metalloendopeptidase related in amino acid sequence to reprolysins which include both hemorrhagic and non-hemorrhagic proteinases. Despite apparent structural similarities, fibrinolytic and hemorrhagic proteinases differ significantly in substrate specificity. In this study, we have examined the activity of lebetase I against biologically active peptides (bradykinin, kallidin, substance P) and 6-10 amino acid residues containing peptides synthesized according to cleavage regions of alpha(2)-macroglobulin, pregnancy zone protein (PZP) and fibrinogen. Lebetase was found to have no activity against studied hexapeptides. Surprisingly, the best substrates for lebetase were substance P, and peptide fragment of PZP, both were cleaved at position Pro-Gln. Identification of the hydrolysis products of 15 peptides by MALDI-TOF mass spectrometry analysis indicates that lebetase possesses broad substrate specificity. The MALDI-TOF MS technique was proven to be highly efficient for the recovery and identification of the peptides released by lebetase hydrolysis.
Biochimica et Biophysica Acta | 1998
Ene Siigur; Mari Samel; Külli Tõnismägi; Juhan Subbi; Tõnu Reintamm; Jüri Siigur
A factor V activator (VLFVA) was separated from Vipera lebetina venom by gel filtration on Sephadex G-100 superfine, followed by chromatography on CM-cellulose and on heparin-agarose. This enzyme (VLFVA) with a molecular mass of 28.4 kDa, as determined by matrix assisted laser desorption ionization time-of-flight mass spectrometry, is a single-chain glycoprotein containing seven residues of neutral sugars, seven residues of hexosamines and three residues of neuraminic acid per molecule. The treatment with N-glycosidase F lowered the molecular mass approximately 6%. The N-terminal sequencing of VLFVA up to the 30th residue evidenced a high homology with Vipera russelli factor V activator RVV-Vgamma (90% identity). Aside from factor V, no other protein substrate for VLFVA has yet been identified. VLFVA hydrolyzes several synthetic arginine ester substrates, such as benzoylarginine ethyl ester (BAEE), tosylarginine methyl ester (TAME) and amide substrates such as Pro-Phe-Arg-MCA. The arginine ester hydrolase activity of the enzyme is markedly lower than that of the crude venom. The ability of VLFVA to activate factor V and its activity to BAEE and TAME were inhibited by the serine proteinase inhibitor, diisopropylfluorophosphate. VLFVA is thermostable protein, heating for 20 min at 70 degrees C does not alter the arginine esterase activity of the enzyme.
Pathophysiology of Haemostasis and Thrombosis | 2001
Jüri Siigur; Anu Aaspõllu; Külli Tõnismägi; Katrin Trummal; Mari Samel; Heiki Vija; Juhan Subbi; Ene Siigur
Our studies of the venom from the Levantine viper Vipera lebetina have demonstrated the existence of both coagulants and anticoagulants in the same venom. We showed that V. lebetina venom contains: (1) proteases that degrade fibrinogen, but not fibrin; (2) fibrinolytic enzyme (lebetase); (3) factor X activator (VLFXA); (4) factor V activator (VLFVA). Fibrinolytic enzyme and VLFXA are metalloproteases; the other studied enzymes are serine proteases. α-Fibrinogenase has no homolog among known serine proteases. β-Fibrinogenase is a typical thermostable arginine esterase that hydrolyzes esters and amides of arginine and attacks the β-chain of fibrinogen. Lebetase is a direct-acting fibrinolytic zinc metalloendopeptidase related in amino acid sequence to reprolysins. We used the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique for the recovery and identification of peptides released by protease hydrolysis and for the detection of human factor X cleavage products after VLFXA hydrolysis. VLFXA cleaves the Arg52-Ile53 bond in the heavy chain of human factor X and the Arg226-Val227 bond in human factor IX precursor; VLFVA cleaves Arg1545-Ser1546 in factor V.
Toxicon | 2002
Mari Samel; Juhan Subbi; Jüri Siigur; Ene Siigur
Two glycosylated serine fibrinogenases isolated from Vipera lebetina venom have homologous N-terminal sequences and antigenic determinants but can be clearly differentiated according to substrate specificity, glycosylation levels, molecular mass and fibrinogen degradation. alpha-Fibrinogenase has no homolog among known serine proteinases. It has N-terminal similarity with snake venom arginine esterases but does not hydrolyze the esters of arginine, lysine and tyrosine. The enzyme has strong proteolytic activity and degrades alpha-chain of fibrinogen altering its clottability by thrombin. beta-Fibrinogenase is a typical arginine esterase which hydrolyzes esters and amides of arginine and attacks the beta-chain of fibrinogen.
Bioorganic & Medicinal Chemistry Letters | 2003
Kaido Viht; Kärt Padari; Gerda Raidaru; Juhan Subbi; Indrek Tammiste; Margus Pooga; Asko Uri
An adenosine-oligoarginine conjugate (ARC) was assembled in a stepwise manner on a poly(ethylene glycol) carrier. The pegylated conjugate inhibited cAMP-dependent protein kinase with IC(50)=460 nM and the cellular uptake of its BODIPY FL derivative was demonstrated and compared to that of free ARC with fluorescence microscopy.
Bioorganic & Medicinal Chemistry Letters | 2002
Asko Uri; Gerda Raidaru; Juhan Subbi; Kärt Padari; Margus Pooga
A fluorescently labeled adenosine-oligoarginine conjugate (ARC), nanomolar bisubstrate analogue-type inhibitor of basophilic protein kinases PKA and PKC, readily enters cells of different origin and localizes into cytoplasm and nucleus. Moreover, the biotinylated derivative of ARC is able to deliver avidin, a non-covalently attached protein cargo, into cells.
Comparative Biochemistry and Physiology B | 2009
Heiki Vija; Mari Samel; Ene Siigur; Anu Aaspõllu; Külli Tõnismägi; Katrin Trummal; Juhan Subbi; Jüri Siigur
We have previously demonstrated that the fibrinolytic enzyme lebetase is synthesized with disintegrin-like domain that is cleaved posttranslationally (Siigur et al., 1996). Now we isolated a heterodimeric disintegrin viplebedin-2 containing this disintegrin-like part from Vipera lebetina venom using size-exclusion chromatography on Sephadex G-100 sf and HPLC on C18 column. The molecular masses of viplebedin-2 and tryptic peptides from both chains of viplebedin-2 were determined by MALDI-TOF mass spectrometry. Using cDNA library of the venom gland of a single V. lebetina turanica snake the viplebedin-2 coding cDNAs were cloned and sequenced. Viplebedin-2 chains are synthesized from two different genes. One chain, containing VGD sequence in disintegrin loop, is synthesized as a disintegrin-like part of the PII-type metalloprotease, lebetase. The other chain, containing MLD sequence in disintegrin loop, is synthesized from the gene without metalloproteinase domain. Two polyadenylation signal sequences have been found in MLD sequence coding chain precursor cDNAs. Viplebedin-2 dose-dependently inhibited adhesion of platelets to immobilized collagen and inhibited collagen-induced platelet aggregation.
Toxins | 2013
Mari Samel; Heiki Vija; Imbi Kurvet; Kai Künnis-Beres; Katrin Trummal; Juhan Subbi; Anne Kahru; Jüri Siigur
Secretory phospholipasesA2 (sPLA2s) form a large family of structurally related enzymes widespread in nature. Herein, we studied the inhibitory effects of sPLA2s from Vipera lebetina (VLPLA2), Vipera berus berus (VBBPLA2), and Naja naja oxiana (NNOPLA2) venoms on (i) human platelets, (ii) four different bacterial strains (gram-negative Escherichia coli and Vibrio fischeri; gram-positive Staphylococcus aureus and Bacillus subtilis) and (iii) five types of cancer cells (PC-3, LNCaP, MCF-7, K-562 and B16-F10) in vitro. sPLA2s inhibited collagen-induced platelet aggregation: VBBPLA2 IC50 = 0.054, VLPLA2 IC50 = 0.072, NNOPLA2 IC50 = 0.814 μM. p-Bromophenacylbromide-inhibited sPLA2 had no inhibitory action on platelets. 36.17 μM VBBPLA2 completely inhibited the growth of gram-positive Bacillus subtilis whereas no growth inhibition was observed towards gram-negative Escherichia coli. The inhibitory action of sPLA2s (~0.7 μM and ~7 μM) towards cancer cells depended on both venom and cell type. VBBPLA2 (7.2 μM) inhibited significantly the viability of K-562 cells and the cell death appeared apoptotic. The sPLA2s exhibited no inhibitory effect towards LNCaP cells and some effect (8%–20%) towards other cells. Thus, already sub-μM concentrations of sPLA2s inhibited collagen-induced platelet aggregation and from the current suite of studied svPLA2s and test cells, VBBPLA2 was the most growth inhibitory towards Bacillus subtilis and K-562 cells.