Juho Aalto
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juho Aalto.
Science | 2013
Markku Kulmala; Jenni Kontkanen; Heikki Junninen; Katrianne Lehtipalo; H. E. Manninen; Tuomo Nieminen; Tuukka Petäjä; Mikko Sipilä; Siegfried Schobesberger; Pekka Rantala; Alessandro Franchin; Tuija Jokinen; Emma Järvinen; Mikko Äijälä; Juha Kangasluoma; Jani Hakala; Pasi Aalto; Pauli Paasonen; Jyri Mikkilä; Joonas Vanhanen; Juho Aalto; Hannele Hakola; Ulla Makkonen; Taina M. Ruuskanen; Roy L. Mauldin; Jonathan Duplissy; Hanna Vehkamäki; Jaana Bäck; Aki Kortelainen; Ilona Riipinen
Aerosol Formation Most atmospheric aerosol particles result from a growth process that begins with atmospheric molecules and clusters, progressing to larger and larger sizes as they acquire other molecules, clusters, and particles. The initial steps of this process involve very small entities—with diameters of less than 2 nanometers—which have been difficult to observe. Kulmala et al. (p. 943; see the Perspective by Andreae) developed a sensitive observational protocol that allows these tiny seeds to be detected and counted, and they mapped out the process of aerosol formation in detail. Detailed aerosol measurements provide a consistent framework for the formation of particles from atmospheric gases. [Also see Perspective by Andreae] Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
Environmental Science & Technology | 2013
Ivan Kourtchev; Stephen J. Fuller; Juho Aalto; Taina M. Ruuskanen; Matthew W. McLeod; Willy Maenhaut; Rod Jones; Markku Kulmala; Markus Kalberer
Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.
Scientific Reports | 2016
Ivan Kourtchev; Chiara Giorio; Antti Manninen; Eoin Wilson; Brendan M. Mahon; Juho Aalto; Maija K. Kajos; Dean S. Venables; Taina M. Ruuskanen; Janne Levula; Matti Loponen; Sarah Connors; N. R. P. Harris; Defeng Zhao; Astrid Kiendler-Scharr; Thomas F. Mentel; Yinon Rudich; Mattias Hallquist; Jean-François Doussin; Willy Maenhaut; Jaana Bäck; Tuukka Petäjä; John C. Wenger; Markku Kulmala; Markus Kalberer
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.
Plant Cell and Environment | 2015
Juho Aalto; Albert Porcar-Castell; Jon Atherton; Pasi Kolari; Toivo Pohja; Pertti Hari; Eero Nikinmaa; Tuukka Petäjä; Jaana Bäck
Abstract Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO 2 exchange and a simple, temperature history‐based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime.
Plant Cell and Environment | 2016
Kaisa Rissanen; Teemu Hölttä; Anni Vanhatalo; Juho Aalto; Eero Nikinmaa; Hannu Rita; Jaana Bäck
Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy.
Scientific Reports | 2017
Tuija Jokinen; Jenni Kontkanen; Katrianne Lehtipalo; H. E. Manninen; Juho Aalto; Albert Porcar-Castell; Olga Garmash; Tuomo Nieminen; Mikael Ehn; Juha Kangasluoma; Heikki Junninen; Janne Levula; Jonathan Duplissy; Lauri Ahonen; Pekka Rantala; Liine Heikkinen; Chao Yan; Mikko Sipilä; Douglas R. Worsnop; Jaana Bäck; Tuukka Petäjä; Veli-Matti Kerminen; Markku Kulmala
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.
PLOS ONE | 2017
Pertti Hari; Tuomas Aakala; Juho Aalto; Jaana Bäck; Jaakko Hollmén; Kalev Jõgiste; Kourosh Kabiri Koupaei; Mika A. Kähkönen; Mikko Korpela; Liisa Kulmala; Eero Nikinmaa; Jukka Pumpanen; Mirja Salkinoja-Salonen; Pauliina Schiestl-Aalto; Asko Simojoki; Mikko Havimo
Isaac Newtons approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.
Archive | 2013
Pertti Hari; Mikko Havimo; Kourosh Kabiri Koupaei; Kalev Jõgiste; Ahto Kangur; Mirja Salkinoja-Salonen; Tuomas Aakala; Juho Aalto; Pauliina Schiestl-Aalto; Jari Liski; Eero Nikinmaa
Metabolism of trees, ground vegetation and microbes generate carbon and nitrogen fluxes in forest ecosystems. Carbon flows through the system, and nitrogen circulates between vegetation and soil. Trees synthesise sugars in photosynthesis and take nitrogen from soil. The biochemical regulation system allocates the annual amounts of synthesised sugars and nitrogen taken up to the growth of needles, wood and fine roots. The regularities in tree structure, generated by the action of the biochemical regulation system, determine the allocation to different tree components.
Remote Sensing | 2018
Matti Mõttus; Rocío Hernández-Clemente; Viljami Perheentupa; Vincent Markiet; Juho Aalto; Jaana Bäck; Caroline J. Nichol
The photochemical reflectance index (PRI) is calculated from vegetation narrowband reflectance in two bands in the visible part of the spectrum. Variations in PRI are associated with changes in the xanthophyll cycle pigments which regulate the light use efficiency of vegetation. Correlations have been found between remotely-sensed PRI and various photosynthetic productivity parameters at the scales from leaves to landscapes. Environmental satellites can provide only an instantaneous value of this index at the time of overpass. The diurnal course of needle (leaf) PRI needs to be known in order to link the instantaneous values robustly with photosynthetic parameters at time scales exceeding one day. This information is not currently available in the scientific literature. Here we present the daily cycle of Scots pine needle and canopy PRI in a southern boreal forest zone in the presence of direct solar radiation during the peak growing season of two consecutive years. We found the PRI of the needles which are exposed to direct radiation to have a distinct diurnal cycle with constant or slightly increasing values before noon and a daily minimum in the afternoon. The cycle in needle PRI was not correlated with that in the incident photosynthetic photon flux density (PPFD). However, when PPFD was above 1000 μmol m−2 s−1, approximately between 8 a.m. and 5 p.m., needle PRI was correlated with the light use efficiency (LUE), measured with shoot chambers. The timing of the minimum needle PRI coincided with the minimum canopy value, as measured by an independent sensor above the canopy, but the correlation between the two variables was not significant. Our field results corroborate the applicability of needle PRI in monitoring the daily variation in LUE. However, to apply this to remote sensing of seasonal photosynthetic productivity, the daily cycle of leaf PRI needs to be known for the specific vegetation type.
Plant Biology | 2018
Teemu Hölttä; M. D. R. Dominguez Carrasco; Yann Salmon; Juho Aalto; Anni Vanhatalo; Jaana Bäck; Anna Lintunen
Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.