Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jukka Jernvall is active.

Publication


Featured researches published by Jukka Jernvall.


Mechanisms of Development | 2000

Reiterative signaling and patterning during mammalian tooth morphogenesis.

Jukka Jernvall; Irma Thesleff

Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.


Mechanisms of Development | 1996

The enamel knot as a signaling center in the developing mouse tooth

Anne Vaahtokari; Thomas Åberg; Jukka Jernvall; Soile Keränen; Irma Thesleff

Mammalian tooth forms are produced during development by folding of the enamel epithelium but the molecular mechanisms involved in the formation and patterning of tooth cusps are not understood. We now report that several key signaling molecules found in well-known vertebrate signaling tissues such as the node, the notochord, the apical ectodermal ridge, and the zone of polarizing activity in the limb bud are specifically expressed in cells of the enamel knot, which is a transient cluster of dental epithelial cells. By comparing three-dimensional reconstructions of serial sections following in situ hybridization we localized Sonic hedgehog, Bone morphogenetic proteins-2, -4 and -7, as well as Fibroblast growth factor-4 in nested domains within the enamel knot. We suggest that the enamel knot acts as a signaling or organizing center, which provides positional information for tooth morphogenesis and regulates the growth of tooth cusps.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A gene network model accounting for development and evolution of mammalian teeth

Isaac Salazar-Ciudad; Jukka Jernvall

Generation of morphological diversity remains a challenge for evolutionary biologists because it is unclear how an ultimately finite number of genes involved in initial pattern formation integrates with morphogenesis. Ideally, models used to search for the simplest developmental principles on how genes produce form should account for both developmental process and evolutionary change. Here we present a model reproducing the morphology of mammalian teeth by integrating experimental data on gene interactions and growth into a morphodynamic mechanism in which developing morphology has a causal role in patterning. The model predicts the course of tooth-shape development in different mammalian species and also reproduces key transitions in evolution. Furthermore, we reproduce the known expression patterns of several genes involved in tooth development and their dynamics over developmental time. Large morphological effects frequently can be achieved by small changes, according to this model, and similar morphologies can be produced by different changes. This finding may be consistent with why predicting the morphological outcomes of molecular experiments is challenging. Nevertheless, models incorporating morphology and gene activity show promise for linking genotypes to phenotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling

Elina Järvinen; Isaac Salazar-Ciudad; Walter Birchmeier; Makoto M. Taketo; Jukka Jernvall; Irma Thesleff

The single replacement from milk teeth to permanent teeth makes mammalian teeth different from teeth of most nonmammalian vertebrates and other epithelial organs such as hair and feathers, whose continuous replacement has been linked to Wnt signaling. Here we show that mouse tooth buds expressing stabilized β-catenin in epithelium give rise to dozens of teeth. The molar crowns, however, are typically simplified unicusped cones. We demonstrate that the supernumerary teeth develop by a renewal process where new signaling centers, the enamel knots, bud off from the existing dental epithelium. The basic aspects of the unlocked tooth renewal can be reproduced with a computer model on tooth development by increasing the intrinsic level of activator production, supporting the role of β-catenin pathway as an upstream activator of enamel knot formation. These results may implicate Wnt signaling in tooth renewal, a capacity that was all but lost when mammals evolved progressively more complicated tooth shapes.


Nature | 2007

High-level similarity of dentitions in carnivorans and rodents.

Alistair R. Evans; Gregory P. Wilson; Mikael Fortelius; Jukka Jernvall

The study of mammalian evolution depends greatly on understanding the evolution of teeth and the relationship of tooth shape to diet. Links between gross tooth shape, function and diet have been proposed since antiquity, stretching from Aristotle to Cuvier, Owen and Osborn. So far, however, the possibilities for exhaustive, quantitative comparisons between greatly different tooth shapes have been limited. Cat teeth and mouse teeth, for example, are fundamentally distinct in shape and structure as a result of independent evolutionary change over tens of millions of years. There is difficulty in establishing homology between their tooth components or in summarizing their tooth shapes, yet both carnivorans and rodents possess a comparable spectrum of dietary specializations from animals to plants. Here we introduce homology-free techniques to measure the phenotypic complexity of the three-dimensional shape of tooth crowns. In our geographic information systems (GIS) analysis of 441 teeth from 81 species of carnivorans and rodents, we show that the surface complexity of tooth crowns directly reflects the foods they consume. Moreover, the absolute values of dental complexity for individual dietary classes correspond between carnivorans and rodents, illustrating a high-level similarity between overall tooth shapes despite a lack of low-level similarity of specific tooth components. These results suggest that scale-independent forces have determined the high-level dental shape in lineages that are widely divergent in size, ecology and life history. This link between diet and phenotype will be useful for inferring the ecology of extinct species and illustrates the potential of fast-throughput, high-level analysis of the phenotype.


Nature | 2007

Predicting evolutionary patterns of mammalian teeth from development

Kathryn Kavanagh; Alistair R. Evans; Jukka Jernvall

One motivation in the study of development is the discovery of mechanisms that may guide evolutionary change. Here we report how development governs relative size and number of cheek teeth, or molars, in the mouse. We constructed an inhibitory cascade model by experimentally uncovering the activator–inhibitor logic of sequential tooth development. The inhibitory cascade acts as a ratchet that determines molar size differences along the jaw, one effect being that the second molar always makes up one-third of total molar area. By using a macroevolutionary test, we demonstrate the success of the model in predicting dentition patterns found among murine rodent species with various diets, thereby providing an example of ecologically driven evolution along a developmentally favoured trajectory. In general, our work demonstrates how to construct and test developmental rules with evolutionary predictability in natural systems.


Advances in Dental Research | 2001

Enamel Knots as Signaling Centers Linking Tooth Morphogenesis and Odontoblast Differentiation

Irma Thesleff; Soile Keränen; Jukka Jernvall

Odontoblasts differentiate from the cells of the dental papilla, and it has been well-established that their differentiation in developing teeth is induced by the dental epithelium. In experimental studies, no other mesenchymal cells have been shown to have the capacity to differentiate into odontoblasts, indicating that the dental papilla cells have been committed to odontoblast cell lineage during earlier developmental stages. We propose that the advancing differentiation within the odontoblast cell lineage is regulated by sequential epithelial signals. The first epithelial signals from the early oral ectoderm induce the odontogenic potential in the cranial neural crest cells. The next step in the determination of the odontogenic cell lineage is the development of the dental papilla from odontogenic mesenchyme. The formation of the dental papilla starts at the onset of the transition from the bud to the cap stage of tooth morphogenesis, and this is regulated by epithelial signals from the primary enamel knot. The primary enamel knot is a signaling center which forms at the tip of the epithelial tooth bud. It becomes fully developed and morphologically discernible in the cap-stage dental epithelium and expresses at least ten different signaling molecules belonging to the BMP, FGF, Hh, and Wnt families. In molar teeth, secondary enamel knots appear in the enamel epithelium at the sites of the future cusps. They also express several signaling molecules, and their formation precedes the folding and growth of the epithelium. The differentiation of odontoblasts always starts from the tips of the cusps, and therefore, it is conceivable that some of the signals expressed in the enamel knots may act as inducers of odontoblast differentiation. The functions of the different signals in enamel knots are not precisely known. We have shown that FGFs stimulate the proliferation of mesenchymal as well as epithelial cells, and they may also regulate the growth of the cusps. We have proposed that the enamel knot signals also have important roles, together with mesenchymal signals, in regulating the patterning of the cusps and hence the shape of the tooth crown. We suggest that the enamel knots are central regulators of tooth development, since they link cell differentiation to morphogenesis.


Nature | 2010

A computational model of teeth and the developmental origins of morphological variation

Isaac Salazar-Ciudad; Jukka Jernvall

The relationship between the genotype and the phenotype, or the genotype–phenotype map, is generally approached with the tools of multivariate quantitative genetics and morphometrics. Whereas studies of development and mathematical models of development may offer new insights into the genotype–phenotype map, the challenge is to make them useful at the level of microevolution. Here we report a computational model of mammalian tooth development that combines parameters of genetic and cellular interactions to produce a three-dimensional tooth from a simple tooth primordia. We systematically tinkered with each of the model parameters to generate phenotypic variation and used geometric morphometric analyses to identify, or developmentally ordinate, parameters best explaining population-level variation of real teeth. To model the full range of developmentally possible morphologies, we used a population sample of ringed seals (Phoca hispida ladogensis). Seal dentitions show a high degree of variation, typically linked to the lack of exact occlusion. Our model suggests that despite the complexity of development and teeth, there may be a simple basis for dental variation. Changes in single parameters regulating signalling during cusp development may explain shape variation among individuals, whereas a parameter regulating epithelial growth may explain serial, tooth-to-tooth variation along the jaw. Our study provides a step towards integrating the genotype, development and the phenotype.


Development | 2012

Tooth shape formation and tooth renewal: evolving with the same signals

Jukka Jernvall; Irma Thesleff

Teeth are found in almost all vertebrates, and they therefore provide a general paradigm for the study of epithelial organ development and evolution. Here, we review the developmental mechanisms underlying changes in tooth complexity and tooth renewal during evolution, focusing on recent studies of fish, reptiles and mammals. Mammals differ from other living vertebrates in that they have the most complex teeth with restricted capacity for tooth renewal. As we discuss, however, limited tooth replacement in mammals has been compensated for in some taxa by the evolution of continuously growing teeth, the development of which appears to reuse the regulatory pathways of tooth replacement.


Science | 1996

Molar Tooth Diversity, Disparity, and Ecology in Cenozoic Ungulate Radiations

Jukka Jernvall; John P. Hunter; Mikael Fortelius

A classic example of adaptive radiation is the diversification of Cenozoic ungulates into herbivore adaptive zones. Their taxonomic diversification has been associated with changes in molar tooth morphology. Analysis of molar crown types of the Artiodactyla, Perissodactyla, and archaic ungulates (“Condylarthra”) shows that the diversity of genera and crown types was high in the Eocene. Post-Eocene molars of intermediate crown types are rare, and thus the ungulate fauna contained more taxa having fewer but more disparate crown types. Taxonomic diversity trends alone give incomplete descriptions of adaptive radiations.

Collaboration


Dive into the Jukka Jernvall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. King

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie R. Godfrey

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge