Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jukka Ylikoski is active.

Publication


Featured researches published by Jukka Ylikoski.


Hearing Research | 1993

Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear

Jukka Ylikoski; Ulla Pirvola; Maxim Moshnyakov; Jaan Palgi; Urmas Arumäe; Mart Saarma

In situ hybridization was used to study the expression of mRNAs of nerve growth factor (NGF), brain-derived neutrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-5 (NT-5) and the components of their high-affinity receptors in the early postnatal and adult rat inner ears. NGF or NT-5 transcripts were not detected in the inner ear neuroepithelium or in the innervating neurons. NT-3 mRNA was intensely expressed over the one-week-old and adult inner hair cells (IHCs) but in the outer hair cells (OHCs) and vestibular maculae only during the early postnatal period. BDNF mRNA was expressed in the IHCs and OHCs of the early postnatal cochlea but not in the adult organ of Corti. High levels of BDNF transcripts were observed in the sensory epithelia of all vestibular end organs. mRNAs of low affinity NGF receptor, trkB and trkC, but not of trk, were expressed in the spiral and vestibular ganglia. In addition, the non-catalytic form of trkB mRNA localized to the sensory epithelia of maculae utriculi and sacculi. The present results show that of the neurotrophins examined, NT-3 is the predominant neurotrophin in the adult organ of Corti and BDNF is that in vestibular organs. The expression patterns of NT-3 and BDNF mRNAs suggest that these neurotrophins may participate in the maintenance of mature cochleovestibular neurons and they may be involved in the survival response of injured neurons.


Neuron | 2002

FGFR1 Is Required for the Development of the Auditory Sensory Epithelium

Ulla Pirvola; Jukka Ylikoski; Ras Trokovic; Jean M. Hébert; Susan K. McConnell; Juha Partanen

The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.


Hearing Research | 1994

Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation

Ulla Pirvola; Urmas Arumäe; Maxim Moshnyakov; Jaan Palgi; Mart Saarma; Jukka Ylikoski

We show that trkB and trkC mRNAs, encoding the high-affinity receptor tyrosine kinases for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), respectively, as well as low-affinity nerve growth factor receptor (p75LNGFR) mRNA are expressed in the cochleovestibular ganglion (CVG) before and during innervation of the target fields. Correspondingly, from preinnervation stages onward, BDNF and NT-3, but neither nerve growth factor (NGF) nor neurotrophin-4 (NT-4) mRNAs are expressed in the sensory epithelium of the otic vesicle, the peripheral target field of CVG neurons. No neurotrophin transcripts were detected by in situ hybridization in the medullary central targets. In explant cultures, neuritogenesis from both the cochlear and vestibular part of the CVG was promoted by BDNF, while NT-3 evoked neurites mainly from the cochlear neurons. Also NT-4 stimulated neurite outgrowth from the CVG in vitro. In dissociated neuron-enriched cultures, NT-3 and BDNF promoted survival of overlapping subsets of CVG neurons and, correspondingly, results from in situ hybridization showed that both trkC and trkB mRNAs were expressed in most neurons of this ganglion. The negligible effect of NGF seen in the bioassays agrees well with the expression of only a few trkA transcripts, encoding the high-affinity receptor for NGF, in the CVG. Based on the spatiotemporal expression patterns and biological effects in vitro, peripherally-synthesized BDNF and NT-3 regulate the survival of CVG neurons as well as the establishment of neuron-target cell contacts in the early-developing inner ear. In addition, the expression of trkB mRNA, more specifically its truncated form, and trkC as well as p75LNGFR mRNAs in distinct non-neuronal structures indicates novel roles for these molecules during development.


Hearing Research | 1998

Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma

Jukka Ylikoski; Ulla Pirvola; Jussi Virkkala; P Suvanto; X.-Q Liang; Ella Magal; Richard A. Altschuler; Josef M. Miller; Mart Saarma

For patients with profound hearing loss, cochlear implants have become the treatment of choice. These devices provide auditory information through direct electrical stimulation of the auditory nerve. Prosthesis function depends on survival and electrical excitability of the cochlear neurons. Degeneration of the auditory nerve occurs after lesions of its peripheral target field (organ of Corti), specifically, including loss of inner hair cells (IHCs). There is now evidence that local treatment of the cochlea with neurotrophins may enhance survival of auditory neurons after aminoglycoside-induced deafness. Glial cell line-derived neurotrophic factor (GDNF) has recently been shown to be an important survival factor in other regions of the nervous system. By in situ hybridization, we now show that IHCs of the neonatal and mature rat cochlea synthesize GDNF and that GDNF-receptor alpha, but not c-Ret, is expressed in the rat spiral ganglion. We also show that GDNF is a potent survival-promoting factor for rat cochlear neurons in vitro. Finally, we examined GDNF efficacy to enhance cochlear-nerve survival after IHC lesions in vivo. We found that chronic intracochlear infusion of GDNF greatly enhances survival of guinea pig cochlear neurons after noise-induced IHC lesions. Our results demonstrate that GDNF is likely to be an endogeneous survival factor in the normal mammalian cochlea and it could have application as a pharmacological treatment to prevent secondary auditory nerve degeneration following organ of Corti damage.


Hearing Research | 2002

Blockade of c-jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death

Jukka Ylikoski; Liang Xing-Qun; Jussi Virkkala; Ulla Pirvola

The ototoxic action of aminoglycoside antibiotics leading to the loss of hair cells of the inner ear is well documented. However, the molecular mechanisms are poorly defined. We have previously shown that in neomycin-exposed organotypic cultures of the cochlea, the c-Jun N-terminal kinase (JNK) pathway--associated with stress, injury and apoptosis--is activated in hair cells and leads to their death. We have also shown that hair cell death can be attenuated by CEP-1347, an inhibitor of JNK signalling [Pirvola et al., J. Neurosci. 20 (2000) 43-50]. In the present study, we demonstrate that gentamicin-induced ototoxicity leads to JNK activation and apoptosis in the inner ear hair cells in vivo. We also show that systemic administration of CEP-1347 attenuates gentamicin-induced decrease of auditory sensitivity and cochlear hair cell damage. In addition, CEP-1347 treatment reduces the extent of hair cell loss in the ampullary cristae after gentamicin intoxication. Particularly, the inner hair cells of the cochlea and type I hair cells of the vestibular organs are protected. We have previously shown that also acoustic overstimulation leads to apoptosis of cochlear hair cells and that CEP-1347 can attenuate noise-induced sensory cell loss. These results suggest that activation of the JNK cascade may be a common molecular outcome of cellular stress in the inner ear sensory epithelia, and that attenuation of the lesion can be provided by inhibiting JNK activation.


Cell and Tissue Research | 1999

Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.

Bernd Fritzsch; Ulla Pirvola; Jukka Ylikoski

Abstract Analyses of single and double mutants of members of the neurotrophin family and their receptors are reviewed. These data demonstrate that the two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3), and their high-affinity receptors trkB and trkC, are the sole support for the developing afferent innervation of the ear. Neurotrophins are first expressed in the otocyst around the time afferent sensory neurons become postmitotic. They are crucial for the survival of certain topologically distinct populations of sensory neurons. BDNF supports all sensory neurons to the semicircular canals, most sensory neurons to the saccule and utricle, and many sensory neurons to the apex and middle turn of the cochlea. In contrast, NT-3 supports few sensory neurons to the utricle and saccule, all sensory neurons to the basal turn of the cochlea and most sensory neurons to the middle and apical turn. Some topologically restricted effects reflect the pattern of neurotrophin distribution as revealed by in situ hybridization (e.g., loss of all innervation to the semicircular canal sensory epithelia in BDNF or trkB mutants). However, other topologically restricted effects cannot be explained on the basis of current knowledge of neurotrophin or neurotrophin receptor distribution. Data on mutants also support the notion that BDNF may play a role in neonatal plastic reorganization of the pattern of innervation in the ear and possibly the brainstem. In contrast, data obtained thus far on the ability of neurotrophins to rescue adult sensory neuron after insults to cochlear hair cells are less compelling. The ear is a model system to test the interactions of the two neurotrophins, BDNF and NT-3, with their two high-affinity receptors, trkB and trkC.


Development | 2005

The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear

Johanna Mantela; Zhe Jiang; Jukka Ylikoski; Bernd Fritzsch; Eldad Zacksenhaus; Ulla Pirvola

Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.


Annals of the New York Academy of Sciences | 1999

Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors

Richard A. Altschuler; Younsook Cho; Jukka Ylikoski; Ulla Pirvola; Ella Magal; Josef M. Miller

ABSTRACT: Trauma and loss of cochlear inner hair cells causes a series of events that result first in the retraction of the peripheral processes of the auditory nerve, scar formation in the organ of Corti, and over the course of weeks to months (depending on the species) the loss of auditory nerve cell bodies (spiral ganglion cells). Neurotrophic factors play an important role in the mature nervous system as survival factors for maintenance and protection and also can play a role in regrowth. Studies in the cochlea now show that application of exogenous neurotrophic factors can enhance survival of spiral ganglion cells after deafness and induce regrowth of peripheral processes, perhaps by replacing lost endogenous factors. Combinations of factors may be most effective for achieving greatest survival and regrowth. Our studies find that brain‐derived neurotrophic factor (BDNF) and glial‐line‐derived neurotrophic factor (GDNF) are very effective at enhancing spiral ganglion cell survival following deafness from ototoxic drugs or noise. It has also been found that BDNF plus fibroblast growth factor (FGF) is very effective at inducing process regrowth. Electrical stimulation also acts to enhance spiral ganglion cell survival, and the combination of electrical stimulation and neurotrophic factors could prove a most effective intervention.


The Journal of Neuroscience | 2007

p19Ink4d and p21Cip1 Collaborate to Maintain the Postmitotic State of Auditory Hair Cells, Their Codeletion Leading to DNA Damage and p53-Mediated Apoptosis

Heidi Laine; Angelika Doetzlhofer; Johanna Mantela; Jukka Ylikoski; Marikki Laiho; Martine F. Roussel; Neil Segil; Ulla Pirvola

Sensory hair cells of the auditory organ are generated during embryogenesis and remain postmitotic throughout life. Previous work has shown that inactivation of the cyclin-dependent kinase inhibitor (CKI) p19Ink4d leads to progressive hearing loss attributable to inappropriate DNA replication and subsequent apoptosis of hair cells. Here we show the synergistic action of another CKI, p21Cip1, on cell cycle reactivation. The codeletion of p19Ink4d and p21Cip1 triggered profuse S-phase entry of auditory hair cells during a restricted period in early postnatal life, leading to the transient appearance of supernumerary hair cells. In addition, we show that aberrant cell cycle reentry leads to activation of a DNA damage response pathway in these cells, followed by p53-mediated apoptosis. The majority of hair cells were absent in adult cochleas. These data, together with the demonstration of changing expression patterns of multiple CKIs in auditory hair cells during the stages of early postnatal maturation, show that the maintenance of the postmitotic state is an active, tissue-specific process, cooperatively regulated by several CKIs, and is critical for the lifelong survival of these sensory cells.


Laryngoscope | 2002

Submucosal bipolar radiofrequency thermal ablation of inferior turbinates: A long-term follow-up with subjective and objective assessment

Leif Bäck; Maija Hytönen; Henrik Malmberg; Jukka Ylikoski

Objective To assess the efficacy and morbidity of bipolar radiofrequency thermal ablation of the inferior turbinates in patients with nasal obstruction caused by turbinate hypertrophy.

Collaboration


Dive into the Jukka Ylikoski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seppo Savolainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

T. Palva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Bäck

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mart Saarma

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge