Julhash U. Kazi
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julhash U. Kazi.
Cancer Cell | 2014
Alexandre Puissant; Nina Fenouille; Gabriela Alexe; Yana Pikman; Christopher F. Bassil; Swapnil Mehta; Jinyan Du; Julhash U. Kazi; Frederic Luciano; Lars Rönnstrand; Andrew L. Kung; Ilene Galinsky; Richard Stone; Daniel J. DeAngelo; Michael T. Hemann; Kimberly Stegmaier
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.
Oncotarget | 2016
Sausan A. Moharram; Rohit A. Chougule; Xianwei Su; Tianfeng Li; Jianmin Sun; Hui Zhao; Lars Rönnstrand; Julhash U. Kazi
Fms-like tyrosine kinase (FLT3) is a frequently mutated oncogene in acute myeloid leukemia (AML). FLT3 inhibitors display promising results in a clinical setting, but patients relapse after short-term treatment due to the development of resistant disease. Therefore, a better understanding of FLT3 downstream signal transduction pathways will help to identify an alternative target for the treatment of AML patients carrying oncogenic FLT3. Activation of FLT3 results in phosphorylation of FLT3 on several tyrosine residues that recruit SH2 domain-containing signaling proteins. We screened a panel of SH2 domain-containing proteins and identified SLAP2 as a potent interacting partner of FLT3. We demonstrated that interaction occurs when FLT3 is activated, and also, an intact SH2 domain of SLAP2 is required for binding. SLAP2 binding sites in FLT3 mainly overlap with those of SRC. SLAP2 over expression in murine proB cells or myeloid cells inhibited oncogenic FLT3-ITD-mediated cell proliferation and colony formation in vitro, and tumor formation in vivo. Microarray analysis suggests that higher SLAP2 expression correlates with a gene signature similar to that of loss of oncogene function. Furthermore, FLT3-ITD positive AML patients with higher SLAP2 expression displayed better prognosis compared to those with lower expression of SLAP2. Expression of SLAP2 blocked FLT3 downstream signaling cascades including AKT, ERK, p38 and STAT5. Finally, SLAP2 accelerated FLT3 degradation through enhanced ubiquitination. Collectively, our data suggest that SLAP2 acts as a negative regulator of FLT3 signaling and therefore, modulation of SLAP2 expression levels may provide an alternative therapeutic approach for FLT3-ITD positive AML.
Journal of Biological Chemistry | 2012
Julhash U. Kazi; Jianmin Sun; Bengt Phung; Fahad Zadjali; Amilcar Flores-Morales; Lars Rönnstrand
Background: Flt3 is an important regulator of hematopoiesis and is often found mutated and constitutively active in patients with acute myeloid leukemia. Results: SOCS6 is up-regulated by Flt3 activation and binds to phosphorylated Flt3. Conclusion: SOCS6 is a negative regulator of Flt3 signaling. Significance: Our results provide a role for SOCS6 in Flt3 signaling. The absence of SOCS6 promotes transformation of cells by Flt3 ITD. The receptor tyrosine kinase Flt3 is an important growth factor receptor in hematopoiesis, and gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia. SOCS6 (suppressor of cytokine signaling 6) is a member of the SOCS family of E3 ubiquitin ligases that can regulate receptor tyrosine kinase signal transduction. In this study, we analyzed the role of SOCS6 in Flt3 signal transduction. The results show that ligand stimulation of Flt3 can induce association of SOCS6 and Flt3 and tyrosine phosphorylation of SOCS6. Phosphopeptide fishing indicated that SOCS6 binds directly to phosphotyrosines 591 and 919 of Flt3. By using stably transfected Ba/F3 cells with Flt3 and/or SOCS6, we show that the presence of SOCS6 can enhance ubiquitination of Flt3, as well as internalization and degradation of the receptor. The presence of SOCS6 also induces weaker activation of Erk1/2, but not Akt, in transfected Ba/F3 and UT-7 cells and in OCI-AML-5 cells. The absence of SOCS6 promotes Ba/F3 and UT-7 cell proliferation induced by oncogenic internal tandem duplications of Flt3. Taken together, these results suggest that SOCS6 negatively regulates Flt3 activation, the downstream Erk signaling pathway, and cell proliferation.
Cellular and Molecular Life Sciences | 2014
Julhash U. Kazi; Nuzhat N. Kabir; Amilcar Flores-Morales; Lars Rönnstrand
Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1–7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs can sometimes bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus, apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways.
Molecular Oncology | 2013
Julhash U. Kazi; Lars Rönnstrand
The suppressor of cytokine signaling 2 (SOCS2) is a member of the SOCS family of E3 ubiquitin ligases. SOCS2 is known to regulate signal transduction by cytokine receptors and receptor tyrosine kinases. The receptor tyrosine kinase FLT3 is of importance for proliferation, survival and differentiation of hematopoietic cells and is frequently mutated in acute myeloid leukemia. We observed that SOCS2 associates with activated FLT3 through phosphotyrosine residues 589 and 919, and co‐localizes with FLT3 in the cell membrane. SOCS2 increases FLT3 ubiquitination and accelerates receptor degradation in proteasomes. SOCS2 negatively regulates FLT3 signaling by blocking activation of Erk 1/2 and STAT5. Furthermore, SOCS2 expression leads to a decrease in FLT3‐ITD‐mediated cell proliferation and colony formation. Thus, we suggest that SOCS2 associates with activated FLT3 and negatively regulates the FLT3 signaling pathways.
Blood | 2012
De-Chen Lin; Tong Yin; Maya Koren-Michowitz; Ling-Wen Ding; Saskia Gueller; Sigal Gery; Takayuki Tabayashi; Ulla Bergholz; Julhash U. Kazi; Lars Rönnstrand; Carol Stocking; H. Phillip Koeffler
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in approximately one-third of AML patients, mostly by internal tandem duplications (ITDs). Adaptor protein Lnk is a negative regulator of hematopoietic cytokine signaling. In the present study, we show that Lnk interacts physically with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through the SH2 domains. We have identified the tyrosine residues 572, 591, and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Lnk itself was tyrosine phosphorylated by both FLT3 ligand (FL)-activated FLT3-WT and constitutively activated FLT3-ITD. Both shRNA-mediated depletion and forced overexpression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Moreover, Lnk inhibited 32D cell proliferation driven by different FLT3 variants. Analysis of primary BM cells from Lnk-knockout mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors. The results of the present study show that through direct binding to FLT3, Lnk suppresses FLT3-WT/ITD-dependent signaling pathways involved in the proliferation of hematopoietic cells. Therefore, modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD-associated hematopoietic disease.
Molecular Carcinogenesis | 2008
Jae Won Soh; Julhash U. Kazi; Han Li; W. Joseph Thompson; I. Bernard Weinstein
Although it is often assumed that the antitumor effects of nonsteroidal anti‐inflammatory drugs (NSAIDs) are due to inhibition of cyclooxgenase (COX) activity, specifically COX‐2, there is accumulating evidence that COX‐2 independent mechanisms can also play an important role. Studies with sulindac sulfone (Aptosyn) and related derivatives have revealed a novel pathway of tumor growth inhibition and apoptosis mediated by activation of the guanosine 3′,5′ monophosphate (cGMP)‐dependent enzyme protein kinase G (PKG). The present study indicates that concentrations of the NSAIDs celecoxib, indomethacin, and meclofenamic acid that inhibit growth of SW480 human colon cancer cells inhibit subcellular cGMP‐phosphodiesterase (PDE) enzymatic activity and in intact cells induce a two‐ to threefold increase in intracellular levels of cGMP. This is associated with phosphorylation of the protein VASP, a marker of PKG activation, activation of JNK1 and a decrease in cellular levels of cyclin D1; effects seen with other agents that cause activation of PKG in these cells. On the other hand even a high concentration of the COX‐2 specific inhibitor rofecoxib (500 µM) did not inhibit growth of SW480 cells. Nor did rofecoxib inhibit cGMP‐PDE activity or cause other changes related to PKG activation in these cells. Since activation of the PKG pathways by celecoxib, indomethacin, and meclofenamic acid in this cell culture system required high concentrations of these compounds, it remains to be determined whether activation of this pathway contributes to the in vivo antitumor effects of specific NSAIDs.
PLOS ONE | 2012
Julhash U. Kazi; Lars Rönnstrand
Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.
Molecular Oncology | 2013
Julhash U. Kazi; Lars Rönnstrand
The adaptor protein Grb10 plays important roles in mitogenic signaling. However, its roles in acute myeloid leukemia (AML) are predominantly unknown. Here we describe the role of Grb10 in FLT3‐ITD‐mediated AML. We observed that Grb10 physically associates with FLT3 in response to FLT3‐ligand (FL) stimulation through FLT3 phospho‐tyrosine 572 and 793 residues and constitutively associates with oncogenic FLT3‐ITD. Furthermore endogenous Grb10–FLT3 association was observed in OCI‐AML‐5 cells. Grb10 expression did not alter FLT3 receptor activation or stability in Ba/F3‐FLT3 cells. However, expression of Grb10 enhanced FL‐induced Akt phosphorylation without affecting Erk or p38 phosphorylation in Ba/F3‐FLT3‐WT and Ba/F3‐FLT3‐ITD. Selective Grb10 depletion reduced Akt phosphorylation in Ba/F3‐FLT3‐WT and OCI‐AML‐5 cells. Grb10 transduces signal from FLT3 by direct interaction with p85 and Ba/F3‐FLT3‐ITD cells expressing Grb10 exhibits higher STAT5 activation. Grb10 regulates the cell cycle by increasing cell population in S‐phase. Expression of Grb10 furthermore resulted in an increased proliferation and survival of Ba/F3‐FLT3‐ITD cells as well as increased colony formation in semisolid culture. Grb10 expression was significantly increased in AML patients compared to healthy controls and was also elevated in patients carrying FLT3‐ITD mutants. The elevated Grb10 expression partially correlated to relapse as well as to poor prognosis. These results suggest that Grb10 binds to both normal and oncogenic FLT3 and induces PI3K–Akt and STAT5 signaling pathways resulting in an enhanced proliferation, survival and colony formation of hematopoietic cells.
Journal of Cell Science | 2014
Julhash U. Kazi; Shruti Agarwal; Jianmin Sun; Enrico Bracco; Lars Rönnstrand
ABSTRACT The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.