Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia A. Schnabel is active.

Publication


Featured researches published by Julia A. Schnabel.


IEEE Transactions on Medical Imaging | 2003

Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration

Daniel Rueckert; Alejandro F. Frangi; Julia A. Schnabel

In this paper, we show how the concept of statistical deformation models (SDMs) can be used for the construction of average models of the anatomy and their variability. SDMs are built by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs is similar to statistical shape models (SSMs) which capture statistical information about shapes across a population, but offers several advantages over SSMs. First, SDMs can be constructed directly from images such as three-dimensional (3-D) magnetic resonance (MR) or computer tomography volumes without the need for segmentation which is usually a prerequisite for the construction of SSMs. Instead, a nonrigid registration algorithm based on free-form deformations and normalized mutual information is used to compute the deformations required to establish dense correspondences between the reference subject and the subjects in the population class under investigation. Second, SDMs allow the construction of an atlas of the average anatomy as well as its variability across a population of subjects. Finally, SDMs take the 3-D nature of the underlying anatomy into account by analysing dense 3-D deformation fields rather than only information about the surface shape of anatomical structures. We show results for the construction of anatomical models of the brain from the MR images of 25 different subjects. The correspondences obtained by the nonrigid registration are evaluated using anatomical landmark locations and show an average error of 1.40 mm at these anatomical landmark positions. We also demonstrate that SDMs can be constructed so as to minimize the bias toward the chosen reference subject.


IEEE Transactions on Medical Imaging | 2002

Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling

Alejandro F. Frangi; Daniel Rueckert; Julia A. Schnabel; Wiro J. Niessen

A novel method is introduced for the generation of landmarks for three-dimensional (3-D) shapes and the construction of the corresponding 3-D statistical shape models. Automatic landmarking of a set of manual segmentations from a class of shapes is achieved by 1) construction of an atlas of the class, 2) automatic extraction of the landmarks from the atlas, and 3) subsequent propagation of these landmarks to each example shape via a volumetric nonrigid registration technique using multiresolution B-spline deformations. This approach presents some advantages over previously published methods: it can treat multiple-part structures and requires less restrictive assumptions on the structures topology. In this paper, we address the problem of building a 3-D statistical shape model of the left and right ventricle of the heart from 3-D magnetic resonance images. The average accuracy in landmark propagation is shown to be below 2.2 mm. This application demonstrates the robustness and accuracy of the method in the presence of large shape variability and multiple objects.


medical image computing and computer assisted intervention | 2001

A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations

Julia A. Schnabel; Daniel Rueckert; Marcel Quist; Jane M. Blackall; Andy D. Castellano-Smith; Thomas Hartkens; Graeme P. Penney; Walter A. Hall; Haiying Liu; Charles L. Truwit; Frans A. Gerritsen; Derek L. G. Hill; David J. Hawkes

This work presents a framework for non-rigid registration which extends and generalizes a previously developed technique by Rueckert et al. [1]. We combine multi-resolution optimization with free-form deformations (FFDs) based on multi-level B-splines to simulate a non-uniform control point distribution. We have applied this to a number of different medical registration tasks to demonstrate its wide applicability, including interventional MRI brain tissue deformation compensation, breathing motion compensation in liver MRI, intra-modality inter-modality registration of pre-operative brain MRI to CT electrode implant data, and inter-subject registration of brain MRI. Our results demonstrate that the new algorithm can successfully register images with an improved performance, while achieving a significant reduction in run-time.


medical image computing and computer assisted intervention | 2011

Non-local shape descriptor: a new similarity metric for deformable multi-modal registration

Mattias P. Heinrich; Mark Jenkinson; Manav Bhushan; Tahreema N. Matin; Fergus V. Gleeson; J. Michael Brady; Julia A. Schnabel

Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this problem and proposes a new similarity metric for multi-modal registration, the non-local shape descriptor. It aims to extract the shape of anatomical features in a non-local region. By utilizing the dense evaluation of shape descriptors, this new measure bridges the gap between intensity-based and geometric feature-based similarity criteria. Our new metric allows for accurate and reliable registration of clinical multi-modal datasets and is robust against the most considerable differences between modalities, such as non-functional intensity relations, different amounts of noise and non-uniform bias fields. The measure has been implemented in a non-rigid diffusion-regularized registration framework. It has been applied to synthetic test images and challenging clinical MRI and CT chest scans. Experimental results demonstrate its advantages over the most commonly used similarity metric - mutual information, and show improved alignment of anatomical landmarks.


IEEE Transactions on Medical Imaging | 2011

Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge

K. Murphy; B. van Ginneken; Joseph M. Reinhardt; Sven Kabus; Kai Ding; Xiang Deng; Kunlin Cao; Kaifang Du; Gary E. Christensen; V. Garcia; Tom Vercauteren; Nicholas Ayache; Olivier Commowick; Grégoire Malandain; Ben Glocker; Nikos Paragios; Nassir Navab; V. Gorbunova; Jon Sporring; M. de Bruijne; Xiao Han; Mattias P. Heinrich; Julia A. Schnabel; Mark Jenkinson; Cristian Lorenz; Marc Modat; Jamie R. McClelland; Sebastien Ourselin; S. E. A. Muenzing; Max A. Viergever

EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra patient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the con figuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.


IEEE Transactions on Medical Imaging | 2003

Validation of nonrigid image registration using finite-element methods: application to breast MR images

Julia A. Schnabel; Christine Tanner; Andy D. Castellano-Smith; Andreas Degenhard; Martin O. Leach; D. R. Hose; Derek L. G. Hill; David J. Hawkes

Presents a novel method for validation of nonrigid medical image registration. This method is based on the simulation of physically plausible, biomechanical tissue deformations using finite-element methods. Applying a range of displacements to finite-element models of different patient anatomies generates model solutions which simulate gold standard deformations. From these solutions, deformed images are generated with a range of deformations typical of those likely to occur in vivo. The registration accuracy with respect to the finite-element simulations is quantified by co-registering the deformed images with the original images and comparing the recovered voxel displacements with the biomechanically simulated ones. The functionality of the validation method is demonstrated for a previously described nonrigid image registration technique based on free-form deformations using B-splines and normalized mutual information as a voxel similarity measure, with an application to contrast-enhanced magnetic resonance mammography image pairs. The exemplar nonrigid registration technique is shown to be of subvoxel accuracy on average for this particular application. The validation method presented here is an important step toward more generic simulations of biomechanically plausible tissue deformations and quantification of tissue motion recovery using nonrigid image registration. It will provide a basis for improving and comparing different nonrigid registration techniques for a diversity of medical applications, such as intrasubject tissue deformation or motion correction in the brain, liver or heart.


Medical Image Analysis | 2012

MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration

Mattias P. Heinrich; Mark Jenkinson; Manav Bhushan; Tahreema N. Matin; Fergus V. Gleeson; Sir Michael Brady; Julia A. Schnabel

Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations.


medical image computing and computer assisted intervention | 2011

Longitudinal brain MRI analysis with uncertain registration

Ivor J. A. Simpson; Mark W. Woolrich; Adrian R. Groves; Julia A. Schnabel

In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing is often used to compensate for the uncertainty of the mapping. We derive localised measurements of spatial uncertainty from a probabilistic registration framework, which provides a principled approach to image smoothing. We evaluate our method using longitudinal deformation features from a set of MR brain images acquired from the Alzheimers Disease Neuroimaging Initiative. These images are spatially normalised using our probabilistic registration algorithm. The spatially normalised longitudinal features are adaptively smoothed according to the registration uncertainty. The proposed adaptive smoothing shows improved classification results, (84% correct Alzheimers Disease vs. controls), over either not smoothing (79.6%), or using a Gaussian filter with sigma = 2mm (78.8%).


medical image computing and computer assisted intervention | 2001

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration

Daniel Rueckert; Alejandro F. Frangi; Julia A. Schnabel

In this paper we introduce the concept of statistical deformation models (SDM) which allow the construction of average models of the anatomy and their variability. SDMs are built by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs is similar to active shape models (ASM) which capture statistical information about shapes across a population but offers several new advantages over ASMs: Firstly, SDMs can be constructed directly from images such as MR or CT without the need for segmentation which is usually a prerequisite for the construction of active shape models. Instead a non-rigid registration algorithm is used to compute the deformations required to establish correspondences between the reference subject and the subjects in the population class under investigation. Secondly, SDMs allow the construction of an atlas of the average anatomy as well as its variability across a population of subjects. Finally, SDMs take the 3D nature of the underlying anatomy into account by analysing dense 3D deformation fields rather than only the 2D surface shape of anatomical structures. We demonstrate the applicability of this new framework to MR images of the brain and show results for the construction of anatomical models from 25 different subjects.


Medical Physics | 2008

Objective assessment of deformable image registration in radiotherapy: A multi-institution study

Rojano Kashani; Martina Hub; James M. Balter; Marc L. Kessler; Lei Dong; Lifei Zhang; Lei Xing; Yaoqin Xie; David J. Hawkes; Julia A. Schnabel; Jamie R. McClelland; Sarang C. Joshi; Quan Chen; Weiguo Lu

The looming potential of deformable alignment tools to play an integral role in adaptive radiotherapy suggests a need for objective assessment of these complex algorithms. Previous studies in this area are based on the ability of alignment to reproduce analytically generated deformations applied to sample image data, or use of contours or bifurcations as ground truth for evaluation of alignment accuracy. In this study, a deformable phantom was embedded with 48 small plastic markers, placed in regions varying from high contrast to roughly uniform regional intensity, and small to large regional discontinuities in movement. CT volumes of this phantom were acquired at different deformation states. After manual localization of marker coordinates, images were edited to remove the markers. The resulting image volumes were sent to five collaborating institutions, each of which has developed previously published deformable alignment tools routinely in use. Alignments were done, and applied to the list of reference coordinates at the inhale state. The transformed coordinates were compared to the actual marker locations at exhale. A total of eight alignment techniques were tested from the six institutions. All algorithms performed generally well, as compared to previous publications. Average errors in predicted location ranged from 1.5 to 3.9 mm, depending on technique. No algorithm was uniformly accurate across all regions of the phantom, with maximum errors ranging from 5.1 to 15.4 mm. Larger errors were seen in regions near significant shape changes, as well as areas with uniform contrast but large local motion discontinuity. Although reasonable accuracy was achieved overall, the variation of error in different regions suggests caution in globally accepting the results from deformable alignment.

Collaboration


Dive into the Julia A. Schnabel's collaboration.

Top Co-Authors

Avatar

David J. Hawkes

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge