Julia B. Desojo
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia B. Desojo.
Journal of Systematic Palaeontology | 2010
Stephen L. Brusatte; Michael J. Benton; Julia B. Desojo; Max C. Langer
Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.
Journal of Vertebrate Paleontology | 2010
Marco Brandalise de Andrade; Mark T. Young; Julia B. Desojo; Stephen L. Brusatte
ABSTRACT Metriorhynchids were a peculiar group of fully marine Mesozoic crocodylomorphs. The derived genera Dakosaurus and Geosaurus exhibit a macroevolutionary trend towards extreme hypercarnivory, underpinned by a diverse array of craniodental adaptations, including denticulate serrated (ziphodont) dentition. A comparative analysis of serrations in Metriorhynchidae shows that known Dakosaurus species had conspicuous denticles, in contrast to the microscopic denticles of Geosaurus. A new tooth from the Nusplingen Plattenkalk of Germany provides evidence for a previously unknown large species of Geosaurus. Metriorhynchid specimens from the upper Kimmeridgian—lower Tithonian of Southern Germany show that ziphodont species of Dakosaurus and Geosaurus co-occurred in the Nusplingen and Solnhofen Seas. Although these genera are similarly denticulate, they diverge in overall crown morphology. Therefore, resource/niche partitioning via craniodental differentiation is posited as maintaining two contemporaneous genera of highly predatory metriorhynchids. Additionally, the new generic name Torvoneustes is proposed for “Geosaurus” carpenteri, the only known metriorhynchid with false-ziphodont dentition. A cladistic analysis shows that ziphodont dentition may have evolved independently in Dakosaurus and Geosaurus, or been acquired earlier by their common ancestor and secondarily lost in Torvoneustes and related taxa.
PLOS ONE | 2012
Mark T. Young; Stephen L. Brusatte; Marco Brandalise de Andrade; Julia B. Desojo; Brian Lee Beatty; Lorna Steel; Marta S. Fernández; Manabu Sakamoto; José Ignacio Ruiz-Omeñaca; Rainer R. Schoch
Background Dakosaurus and Plesiosuchus are characteristic genera of aquatic, large-bodied, macrophagous metriorhynchid crocodylomorphs. Recent studies show that these genera were apex predators in marine ecosystems during the latter part of the Late Jurassic, with robust skulls and strong bite forces optimized for feeding on large prey. Methodology/Principal Findings Here we present comprehensive osteological descriptions and systematic revisions of the type species of both genera, and in doing so we resurrect the genus Plesiosuchus for the species Dakosaurus manselii. Both species are diagnosed with numerous autapomorphies. Dakosaurus maximus has premaxillary ‘lateral plates’; strongly ornamented maxillae; macroziphodont dentition; tightly fitting tooth-to-tooth occlusion; and extensive macrowear on the mesial and distal margins. Plesiosuchus manselii is distinct in having: non-amblygnathous rostrum; long mandibular symphysis; microziphodont teeth; tooth-crown apices that lack spalled surfaces or breaks; and no evidence for occlusal wear facets. Our phylogenetic analysis finds Dakosaurus maximus to be the sister taxon of the South American Dakosaurus andiniensis, and Plesiosuchus manselii in a polytomy at the base of Geosaurini (the subclade of macrophagous metriorhynchids that includes Dakosaurus, Geosaurus and Torvoneustes). Conclusions/Significance The sympatry of Dakosaurus and Plesiosuchus is curiously similar to North Atlantic killer whales, which have one larger ‘type’ that lacks tooth-crown breakage being sympatric with a smaller ‘type’ that has extensive crown breakage. Assuming this morphofunctional complex is indicative of diet, then Plesiosuchus would be a specialist feeding on other marine reptiles while Dakosaurus would be a generalist and possible suction-feeder. This hypothesis is supported by Plesiosuchus manselii having a very large optimum gape (gape at which multiple teeth come into contact with a prey-item), while Dakosaurus maximus possesses craniomandibular characteristics observed in extant suction-feeding odontocetes: shortened tooth-row, amblygnathous rostrum and a very short mandibular symphysis. We hypothesise that trophic specialisation enabled these two large-bodied species to coexist in the same ecosystem.
Geological Society, London, Special Publications | 2013
Sterling J. Nesbitt; Julia B. Desojo; Randall B. Irmis
Archosaurs, an important reptile group that includes today’s crocodiles and birds, arose during the Triassic in the aftermath of the greatest mass extinction of all time. In the last 20 years, our understanding of the early evolution of the group has improved substantially with the discovery of new fossils and species of early archosaurs and their closest relatives, a better understanding of the relationships of these animals, and new insights into their palaeobiology. In order to synthesize these new data, researchers of early archosaurs from around the world met at the first symposium of early archosaur evolution at the IV Congreso Latinoamericano de Paleontologia de Vertebrados (September 2011) in San Juan, Argentina. This symposium facilitated collaboration and strove to paint a better understanding of these extraordinary animals. The resultant body of work is a state-of-the-art examination of early archosaur groups and their close relatives including historical, anatomical, biogeographical, evolutionary and palaeobiological data. This contribution furthers our knowledge of the anatomy, relationships, and palaeobiology of species-level taxa as well as more global patterns of archosaur evolution during the Triassic.
Scientific Reports | 2013
Lucas E. Fiorelli; Martín D. Ezcurra; E. Martín Hechenleitner; Eloisa Argañaraz; Jeremías R. A. Taborda; M. Jimena Trotteyn; M. Belén von Baczko; Julia B. Desojo
Defecation in communal latrines is a common behaviour of extant mammals widely distributed among megaherbivores. This behaviour has key social functions with important biological and ecological implications. Herbivore communal latrines are only documented among mammals and their fossil record is exceptionally restricted to the late Cenozoic. Here we report the discovery of several massive coprolite associations in the Middle-Late Triassic of the Chañares Formation, Argentina, which represent fossil communal latrines based on a high areal density, small areal extension and taphonomic attributes. Several lines of evidence (size, morphology, abundance and coprofabrics) and their association with kannemeyeriiform dicynodonts indicate that these large synapsids produced the communal latrines and had a gregarious behaviour comparable to that of extant megaherbivores. This is the first evidence of megaherbivore communal latrines in non-mammal vertebrates, indicating that this mammal-type behaviour was present in distant relatives of mammals, and predates its previous oldest record by 220 Mya.
Journal of Morphology | 2011
Paula Bona; Julia B. Desojo
Caiman latirostris Daudin is one of the extant species of Caimaninae alligatorids characterized taxonomically only by external morphological features. In the present contribution, we describe the cranial osteology and myology of this species and its morphological variation. Several skull dissections and comparisons with other caimans were made. Although jaw muscles of living crocodiles show the same general “Bauplan” and alligatorids seem to have a similar cranial musculature pattern, we describe some morphological variations (e.g., in C. latirostris the superficial portion of the M. adductor mandibulae externus did not reach the postorbital; the M. adductor mandibulae internus pars pterygoideus dorsalis did not reach the pterygoid and lacrimal and contrary to the case of C. crocodilus the M. adductor mandibulae internus pars pterygoideus ventralis attaches to the posterodorsal surface of the pterygoid and the pterygoid aponeurosis, without contacting the dorsal and ventral surface of the pterygoid margin; the M. intermandibularis is attached to the anterior half of the splenial and posteriorly inserts medially by a medial raphe that serves as attachment zone for M. constrictor colli, and the M. constrictor colli profundus presents a medial notch in its anterior margin). In addition, the skull of C. latirostris differs from that of other caimans and possesses several characters that are potential diagnostic features of this species (e.g., outline of glenoid cavity in dorsal view, extension of the rostral ridges, and occlusion of the first dentary tooth). Nevertheless, these characters should be analyzed within the phylogenetic context of the Caimaninae to evaluate its evolutionary implications for the history of the group. J. Morphol. 2011.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012
Mark T. Young; Stephen L. Brusatte; Brian Lee Beatty; Marco Brandalise de Andrade; Julia B. Desojo
Metriorhynchidae was a peculiar but long‐lived group of marine Mesozoic crocodylomorphs adapted to a pelagic lifestyle. Recent discoveries show that metriorhynchids evolved a wide range of craniodental morphotypes and inferred feeding strategies. One genus, Dakosaurus, is arguably the most aberrant marine crocodylomorph due to its large, robust, ziphodont teeth; very low tooth count; and brevirostrine/oreinirostral snout. We here report an additional unusual feature of Dakosaurus that is unique among marine crocodylomorphs: tightly fitting tooth‐to‐tooth occlusion, whose inference is supported by reception pits along the upper and lower tooth rows, indicative of vertically orientated crowns that were in close contact during occlusion, and three distinct types of dental wear. These include irregular spalled surfaces near the apex (probably caused by tooth‐food contact), semi‐circular wear near the base, and elongate surfaces extending along the mesial and distal margins of the teeth, obliterating the carinae (including the denticles). Scanning electron micrographs show that these latter surfaces are marked by parallel apicobasal striations, which in extant mammals reflect tooth–tooth contact. As such, we interpret the carinal wear facets in Dakosaurus as being formed by repeated tooth–tooth contact between the mesial and distal margins of the teeth of the upper and lower jaw. We posit that this increased the available shearing surface on their high crowns. Together, these wear patterns suggest that occlusion in Dakosaurus was specialized for cutting large and abrasive prey items into portions small enough to swallow, making it a prime example of an aquatic reptile with macrophagous feeding habits. Anat Rec, 2012.
Geological Society, London, Special Publications | 2013
Julia B. Desojo; Andrew B. Heckert; Jeffrey W. Martz; William G. Parker; Rainer R. Schoch; Bryan J. Small; Tomasz Sulej
Abstract Aetosauria is a clade of obligately quadrupedal, heavily armoured pseudosuchians known from Upper Triassic (late Carnian–Rhaetian) strata on every modern continent except Australia and Antarctica. As many as 22 genera and 26 species ranging from 1 to 6 m in length, and with a body mass ranging from less than 10 to more than 500 kg, are known. Aetosauroides scagliai was recently recovered as the most basal aetosaur, placed outside of Stagonolepididae (the last common ancestor of Desmatosuchus and Aetosaurus). Interrelationships among the basal aetosaurs are not well understood but two clades with relatively apomorphic armour – the spinose Desmatosuchinae and the generally wide-bodied Typothoracisinae – are consistently recognized. Paramedian and lateral osteoderms are often distinctive at the generic level but variation within the carapace is not well understood in many taxa, warranting caution in assigning isolated osteoderms to specific taxa. The aetosaur skull and dentition varies across taxa, and there is increasing evidence that at least some aetosaurs relied on invertebrates and/or small vertebrates as a food source. Histological evidence indicates that, after an initial period of rapid growth, lines of arrested growth (LAGs) are common and later growth was relatively slow. The common and widespread Late Triassic ichnogenus Brachychirotherium probably represents the track of an aetosaur.
Journal of Vertebrate Paleontology | 2011
Julia B. Desojo; Martín D. Ezcurra
ABSTRACT The South American record of early Late Triassic aetosaurs is composed of two species: Aetosauroides scagliai and “Aetosauroides subsulcatus.” Previously undescribed materials belonging to “Aetosauroides subsulcatus” allow us to reassess its taxonomy, leading us to consider it a junior synonym of Aetosauroides scagliai. Based on the emended diagnosis of the species provided here, we recognize that specimens assignable to Aetosauroides scagliai are less common than thought previously and several of them are not diagnostic beyond indeterminate non-typothorasicine aetosaurins. Previous assignments of Aetosauroides as a junior synonym of Stagonolepis are not followed because the South American taxon is distinct due to the presence of a maxilla excluded from the external narial margin, tooth crowns with a straight distal margin and without a constriction between the root and crown, a gradually convex ventral margin of the dentary, oval fossae ventral to the neurocentral suture on the lateral sides of the centra, and a ratio between the length and the width between the distal-most tips of the postzygapophyses equal to or lower than 0.75. The evidence provided here bolsters the validity of Aetosauroides and extends the distribution of Aetosauroides scagliai into southern Brazil. Although Stagonolepis was employed as an index taxon for the Adamanian LVF, this genus is currently restricted to Europe and North America. Thus, no overlapping genera or species of aetosaur are shared between South America and other landmasses. Accordingly, the record of aetosaurs is not useful for providing biostratigraphical correlations between Late Triassic South American beds and those in other regions.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014
Torsten M. Scheyer; Julia B. Desojo; Ignacio A. Cerda
As in other archosauriforms, phytosaurs and aetosaurs are characterized by the presence of well‐developed osteoderms. Here we provide a comparative study on the microstructure of phytosaur (five taxa) and aetosaur (thirteen taxa) osteoderms. For outgroup comparison, we sampled osteoderms of the sister taxon to Aetosauria, Revueltosaurus callenderi, and the doswelliid Jaxtasuchus salomoni. Phytosaur, aetosaur, and Jaxtasuchus osteoderms are composed of a diploe structure, whereas the Revueltosaurus osteoderm microanatomy is more compact. The external cortex of phytosaurs, Revueltosaurus and Jaxtasuchus osteoderms is mainly composed of parallel‐fibered bone. In aetosaurs, the external cortex mainly consists of lamellar bone, with lines of resorption within the primary bone indicating successive cycles of bone erosion and deposition. The basal cortex in all the specimens is composed of parallel‐fibered bone, with the cancellous internal core being more strongly developed in aetosaurs than in phytosaurs. Woven or fibro‐lamellar bone was recorded in both phytosaurian and aetosaurian taxa, as well as in Jaxtasuchus. Structural fibers, which at least partly suggest metaplastic origin, were only recorded in the internal core of two phytosaurs and in the basal cortex of one aetosaur. Osteoderm thickness and cancellous to compact bone ratios appear to be subject to ontogenetic change. Minimum growth mark counts in osteoderms sampled indicate that some aetosaurs and phytosaurs lived for at least two decades. Bone microstructures are more uniform in phytosaur osteoderms and show a higher level of disparity among aetosaur osteoderms, and at least in the latter, histological features are potentially apomorphic for species/genus level. Anat Rec, 297:240–260, 2014.